ECTS - Fossil Energy Resources (Oil, Gas and Coal) I
Fossil Energy Resources (Oil, Gas and Coal) I (ENE409) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Fossil Energy Resources (Oil, Gas and Coal) I | ENE409 | Area Elective | 3 | 0 | 0 | 3 | 5 |
Pre-requisite Course(s) |
---|
N/A |
Course Language | English |
---|---|
Course Type | Technical Elective Courses |
Course Level | Bachelor’s Degree (First Cycle) |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture, Demonstration, Discussion, Question and Answer, Drill and Practice. |
Course Lecturer(s) |
|
Course Objectives | The students will understand the fundamentals, current areas of research and goals for the future to support real progress in fossil energy science and technology. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Introduction to fossil energy, global sources of oil and natural gas, petroleum and oil sands, exploration and production, petroleum refining and environmental control and environmental effects, oil shale processing, chemistry and technology, developments in internal combustion engines, gas hydrates, ethics. |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | Basic Concepts | |
2 | Introduction to Fossil Energy | |
3 | Oil and Natural Gas | |
4 | Oil and Natural Gas: Global Sources | |
5 | Petroleum and Oil Sands | |
6 | Petroleum and Oil Sands: Exploration and Production | |
7 | Petroleum Refining | |
8 | Midterm Exam | |
9 | Environmental Control and Environmental Effects in Petroleum Refining | |
10 | Oil Shale Processing | |
11 | Chemistry and Technology of Oil Shale Processing | |
12 | Developments in Internal Combustion Engines | |
13 | Gas Hydrates | |
14 | Ethics | |
15 | Ethics | |
16 | Final Exam |
Sources
Course Book | 1. Ripudaman, Malhotra (Ed.),” Fossil Energy”, Springer, 2013 |
---|---|
Other Sources | 2. Francis Vanek, Louis D. Albright, Energy Systems Engineering: Evaluation and Implementation, 1st Edition, 2008, Mc-Graw Hill |
3. Robert U. Ayres, Ed Ayres, Crossing the Energy Divide: Moving from Fossil Fuel Dependence to a Clean-Energy Future, 2010, Pearson Prentice Hall, ISBN-10: 0137015445 • ISBN-13: 9780137015443 | |
4. Robert W. Kolb, Natural Gas Revolution, The: At the Pivot of the World's Energy Future, 2014 • Pearson, ISBN-10: 0133353516 • ISBN-13: 9780133353518 |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | 1 | 10 |
Laboratory | - | - |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | 2 | 20 |
Presentation | - | - |
Project | - | - |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 1 | 30 |
Final Exam/Final Jury | 1 | 40 |
Toplam | 5 | 100 |
Percentage of Semester Work | 60 |
---|---|
Percentage of Final Work | 40 |
Total | 100 |
Course Category
Core Courses | |
---|---|
Major Area Courses | X |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | An ability to apply knowledge of mathematics, science, and engineering. | X | ||||
2 | An ability to design and conduct experiments, as well as to analyze and interpret data. | X | ||||
3 | An ability to design a system, component, or process to meet desired needs. | X | ||||
4 | An ability to function on multi-disciplinary teams. | X | ||||
5 | An ability to identify, formulate, and solve engineering problems. | X | ||||
6 | An understanding of professional and ethical responsibility. | X | ||||
7 | An ability to communicate effectively. | X | ||||
8 | The broad education necessary to understand the impact of engineering solutions in a global and societal context. | X | ||||
9 | Recognition of the need for, and an ability to engage in life-long learning. | X | ||||
10 | Knowledge of contemporary issues. | X | ||||
11 | An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice. | X | ||||
12 | Skills in project management and recognition of international standards and methodologies |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 16 | 3 | 48 |
Laboratory | |||
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 16 | 2 | 32 |
Presentation/Seminar Prepration | |||
Project | |||
Report | |||
Homework Assignments | |||
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 2 | 15 | 30 |
Prepration of Final Exams/Final Jury | 1 | 15 | 15 |
Total Workload | 125 |