ECTS - Fluid Mechanics
Fluid Mechanics (AE307) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Fluid Mechanics | AE307 | 5. Semester | 3 | 1 | 0 | 3 | 6 |
Pre-requisite Course(s) |
---|
MATH152 |
Course Language | English |
---|---|
Course Type | Service Courses Taken From Other Departments |
Course Level | Bachelor’s Degree (First Cycle) |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture, Discussion, Question and Answer, Drill and Practice, Problem Solving. |
Course Lecturer(s) |
|
Course Objectives | To familiarize students with basic concepts of fluid mechanics, properties of fluids, pressure and fluid statics, fluid kinematics, Bernoulli and energy equations, momentum analysis of flow systems, dimensional analysis and modeling, internal flows, external flows–drag and lift. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Introduction to basic concepts of fluid mechanics; properties of fluids; pressure and fluid statics, fluid kinematics, Bernoulli and energy equations, momentum analysis of flow systems, dimensional analysis and modeling, internal flow, external flow ? drag and lift. |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | About the course and Chapter 1. Introduction and Basic Concepts | Reading test on Chapter 1 |
2 | Chapter 2. Properties of Fluids | Reading test on Chapter 2 |
3 | Chapter 3. Pressure and Fluid Statics | Reading test on Chapter 3 |
4 | Chapter 3. Pressure and Fluid Statics | Reading test on Chapter 3 |
5 | Chapter 4. Fluid Kinematics | Reading test on Chapter 4 |
6 | Chapter 5. Bernoulli and Energy Equations | Reading test on Chapter 5 |
7 | Chapter 5. Bernoulli and Energy Equations | Reading test on Chapter 5 |
8 | Chapter 6. Momentum Analysis of Flow Systems | Reading test on Chapter 6 |
9 | Chapter 7. Dimensional Analysis and Modeling | Reading test on Chapter 7 |
10 | Chapter 8. Internal Flow | Reading test on Chapter 8 |
11 | Chapter 8. Internal Flow | Reading test on Chapter 8 |
12 | Chapter 11. External Flow – Drag and Lift | Reading test on Chapter 11 |
13 | Chapter 11. External Flow – Drag and Lift | Reading test on Chapter 11 |
14 | Review | |
15 | Final Exam |
Sources
Course Book | 1. Yunus A. Çengel and John M. Cimbala, Fluid Mechanics, Third Edition in SI units, McGraw-Hill, 2014 (e-book thru’ McGraw Hill Connect platform) |
---|
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | 1 | 5 |
Laboratory | - | - |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | 15 | 30 |
Presentation | - | - |
Project | - | - |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 2 | 35 |
Final Exam/Final Jury | 1 | 30 |
Toplam | 19 | 100 |
Percentage of Semester Work | 70 |
---|---|
Percentage of Final Work | 30 |
Total | 100 |
Course Category
Core Courses | X |
---|---|
Major Area Courses | |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | An ability to apply knowledge of mathematics, science, and engineering. | |||||
2 | An ability to design and conduct experiments, as well as to analyze and interpret data. | |||||
3 | An ability to design a system, component, or process to meet desired needs. | |||||
4 | An ability to function on multi-disciplinary teams. | |||||
5 | An ability to identify, formulate, and solve engineering problems. | |||||
6 | An understanding of professional and ethical responsibility. | |||||
7 | An ability to communicate effectively. | |||||
8 | The broad education necessary to understand the impact of engineering solutions in a global and societal context. | |||||
9 | Recognition of the need for, and an ability to engage in life-long learning. | |||||
10 | Knowledge of contemporary issues. | |||||
11 | An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice. | |||||
12 | Skills in project management and recognition of international standards and methodologies |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 14 | 3 | 42 |
Laboratory | 14 | 1 | 14 |
Application | 5 | 3 | 15 |
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 14 | 2 | 28 |
Presentation/Seminar Prepration | |||
Project | |||
Report | |||
Homework Assignments | 10 | 3 | 30 |
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 2 | 5 | 10 |
Prepration of Final Exams/Final Jury | 1 | 10 | 10 |
Total Workload | 149 |