ECTS - Electromembrane Processes

Electromembrane Processes (CEAC572) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Electromembrane Processes CEAC572 Area Elective 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Discussion, Question and Answer.
Course Coordinator
Course Lecturer(s)
  • Assoc. Prof. Dr. Enver Güler
Course Assistants
Course Objectives The main objective of this course is to give scientific bases for electromembrane processes. In addition to fundamentals of the topic, design of electrochemical systems and equipment will be explained. Therefore, students will develop their problem-solving skills on the application of ion exchange membrane technology.
Course Learning Outcomes The students who succeeded in this course;
  • Explain the definition of ion exchange membranes and materials.
  • Define concept of the electrochemical and thermodynamic fundamentals.
  • Explain the preparation and characterization of ion exchange membranes.
  • Describe electromembrane processes.
  • Explain the use of ion exchange membranes in electrochemical synthesis.
  • Discuss energy conversion and storage using electromembrane processes.
Course Content Basic concepts and definitions in ion exchange membrane science, materials, characterization, electrochemical and thermodynamic fundamentals, energy conversion technologies, fuel cells, process and equipment design.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction to electromembrane processes Chapter 1
2 Electrochemical and thermodynamic fundamentals Chapter 2
3 Synthesis and characterization of ion exchange membranes Chapter 3
4 Electrodialysis, Electrodeionization Chapter 4
5 Dialysis, Capacitive deionization Chapter 5
6 Electrochemical synthesis Other references
7 Midterm
8 Fuel cells Other references
9 Reverse electrodialysis Other references
10 Capacitive mixing Other resources
11 Process and equipment design I Chapter 5
12 Process and equipment design II Chapter 5
13 Seminars I Other references
14 Seminars II Other references
15 Seminars III Other references
16 Final Exam

Sources

Course Book 1. Strathmann, H., Ion-exchange membrane separation processes, Membrane Science and Technology Series, Elsevier, First edition, 2004.
Other Sources 2. Drioli, E., Giorno, L., Comprehensive Membrane Science and Engineering vol II, Elsevier, First edition, 2010
3. Drioli, E., Giorno, L., Membrane Operations, Wiley-VCH, Germany, 2009

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation 1 20
Project 1 20
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 20
Final Exam/Final Jury 1 40
Toplam 4 100
Percentage of Semester Work 60
Percentage of Final Work 40
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Adequate knowledge of mathematics, physical sciences and the subjects specific to chemical engineering disciplines; the ability to apply theoretical and practical knowledge of these areas in the solution of complex engineering problems.
2 The ability to define, formulate, and solve complex engineering problems; the ability to select and apply proper analysis and modeling methods for this purpose.
3 The ability to design a complex system, process, device or product under realistic constraints and conditions in such a way as to meet the specific requirements; the ability to apply modern design methods for this purpose.
4 The ability to select, and use modern techniques and tools needed to analyze and solve complex problems encountered in chemical engineering practices; the ability to use information technologies effectively.
5 The ability to design experiments, conduct experiments, gather data, and analyze and interpret results for investigating complex engineering problems or research areas specific to engineering disciplines.
6 The ability to work efficiently in inter-, intra-, and multi-disciplinary teams; the ability to work individually.
7 Ability to communicate effectively in Turkish, both in writing and in writing; at least one foreign language knowledge; ability to write reports and understand written reports, to prepare design and production reports, to make presentations, to give clear and understandable instructions.
8 Recognition of the need for lifelong learning; the ability to access information, follow developments in science and technology, and adapt and excel oneself continuously.
9 Acting in conformity with the ethical principles; professional and ethical responsibility and knowledge of the standards employed in chemical engineering applications.
10 Knowledge of business practices such as project management, risk management, and change management; awareness of entrepreneurship and innovation; knowledge of sustainable development.
11 Knowledge of the global and social effects of chemical engineering practices on health, environment, and safety issues, and knowledge of the contemporary issues in engineering areas; awareness of the possible legal consequences of engineering practices.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 1 16
Presentation/Seminar Prepration 1 11 11
Project 1 20 20
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 10 10
Prepration of Final Exams/Final Jury 1 20 20
Total Workload 125