ECTS - Electrochemical Methods: Fundamentals and Applications
Electrochemical Methods: Fundamentals and Applications (CEAC554) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Electrochemical Methods: Fundamentals and Applications | CEAC554 | Area Elective | 3 | 0 | 0 | 3 | 5 |
Pre-requisite Course(s) |
---|
N/A |
Course Language | English |
---|---|
Course Type | Elective Courses |
Course Level | Bachelor’s Degree (First Cycle) |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture, Discussion, Question and Answer. |
Course Lecturer(s) |
|
Course Objectives | The aim of the course explains electrochemical methods and fundamentals and gives an overview of application areas. It explains electrochemical methods like Potentiometry, coulometry, voltammetry, chronometry, polarography etc. Also, the course explains how electrochemical methods can be used with other spectroscopic (UV-vis, ESR, impedance). It explain the preparation and cleaning of the electrodes which are used in electrochemical studies. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | General electrochemical concepts, electroanalysis, introduction to electrochemistry, equilibrium measurements, potentiometry, voltammetry, coulometry, chronometry, polarography, rotating electrodes, rate constants of electron transfer, spectroelectrochemistry, electrochemical ESR spectrometry, impedance, electrode preparation methods, cleaning |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | Electroanalysis, Nomenclature, and Terminology | 1-10 |
2 | An Overview of Experimental Methods | 11-24 |
3 | Equilibrium Measurements | 25-44 |
4 | Equilibrium Measurements | 44-84 |
5 | Potentiometry | 85-96, 96-106 |
6 | MID-TERM 1 | |
7 | Coulometry | 107-130 |
8 | Chronometry and Polarogrophy | 136-155 |
9 | Rotating Electrode, Rate Constants of Electron Transfer | 195-236 |
10 | Spectroelectrochemistry | 239-247 |
11 | Electrochemical ESR Spectroscopy | 147-153 |
12 | İmpedans | 253-270, 270-274 |
13 | MID-TERM 2 | |
14 | Electrode Preparation: Cleaning Electrode Surfaces | 276-280 |
15 | Elektrot Hazırlama: Elektrot Yapımı, Referans Elektrot Yapımı, Miktoelektrotlar | 280-286, 286-288 |
16 | FINAL |
Sources
Course Book | 1. P. Monk, Fundamentals of Electroanalytical Chemistry, John Wiley & Sons LTD, 2001. |
---|---|
Other Sources | 2. Christopher M. A. Brett, Ana Maria Oliveira Brett, Electrochemistry Principles, Methods, and Applications, 2nd Edition, Oxford University Press Inc., 1993. |
3. Waldfried Plieth, Electrochemistry for Materials Science, 1nci Baskı, Elsevier Inc., 2008. | |
4. Cynthia G. Zoski, Handbook of Electrochemistry, 1nci Baskı, Elsevier Inc., 2007. | |
5. Frano Barbir, PEM Fuel Cells: Theory and Practice, 1nci Baskı, Elsevier Inc., 2005. | |
6. Allen J. Bard, Larry R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nci Baskı, John Wiley & Sons, Inc.,2001. |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | - | - |
Laboratory | - | - |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | - | - |
Presentation | - | - |
Project | - | - |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 2 | 60 |
Final Exam/Final Jury | 1 | 40 |
Toplam | 3 | 100 |
Percentage of Semester Work | 60 |
---|---|
Percentage of Final Work | 40 |
Total | 100 |
Course Category
Core Courses | X |
---|---|
Major Area Courses | |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Adequate knowledge of mathematics, physical sciences and the subjects specific to chemical engineering disciplines; the ability to apply theoretical and practical knowledge of these areas in the solution of complex engineering problems. | |||||
2 | The ability to define, formulate, and solve complex engineering problems; the ability to select and apply proper analysis and modeling methods for this purpose. | |||||
3 | The ability to design a complex system, process, device or product under realistic constraints and conditions in such a way as to meet the specific requirements; the ability to apply modern design methods for this purpose. | |||||
4 | The ability to select, and use modern techniques and tools needed to analyze and solve complex problems encountered in chemical engineering practices; the ability to use information technologies effectively. | |||||
5 | The ability to design experiments, conduct experiments, gather data, and analyze and interpret results for investigating complex engineering problems or research areas specific to engineering disciplines. | |||||
6 | The ability to work efficiently in inter-, intra-, and multi-disciplinary teams; the ability to work individually. | |||||
7 | Ability to communicate effectively in Turkish, both in writing and in writing; at least one foreign language knowledge; ability to write reports and understand written reports, to prepare design and production reports, to make presentations, to give clear and understandable instructions. | |||||
8 | Recognition of the need for lifelong learning; the ability to access information, follow developments in science and technology, and adapt and excel oneself continuously. | |||||
9 | Acting in conformity with the ethical principles; professional and ethical responsibility and knowledge of the standards employed in chemical engineering applications. | |||||
10 | Knowledge of business practices such as project management, risk management, and change management; awareness of entrepreneurship and innovation; knowledge of sustainable development. | |||||
11 | Knowledge of the global and social effects of chemical engineering practices on health, environment, and safety issues, and knowledge of the contemporary issues in engineering areas; awareness of the possible legal consequences of engineering practices. |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 16 | 3 | 48 |
Laboratory | |||
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 16 | 1 | 16 |
Presentation/Seminar Prepration | |||
Project | |||
Report | |||
Homework Assignments | |||
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 2 | 20 | 40 |
Prepration of Final Exams/Final Jury | 1 | 21 | 21 |
Total Workload | 125 |