ECTS - Energy Sytems in Buildings

Energy Sytems in Buildings (ENE430) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Energy Sytems in Buildings ENE430 Area Elective 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Discussion, Question and Answer.
Course Coordinator
Course Lecturer(s)
  • Asst. Prof. Dr. Cihan Turhan
Course Assistants
Course Objectives The objective of the course is to give broad engineering treatment of power generation and loss in buildings. In this context heating, ventilation and air conditioning in buildings, the calculation of heat loss and insulation surfaces, water, fuel and electricity consumption in buildings will be covered in lectures.
Course Learning Outcomes The students who succeeded in this course;
  • Understand the importance of the building structure and the building structure on energy efficiency
  • Learning source of the heat loss in buildings and insulation
  • To analyse of water, fuel and electricity consumption in buildings
  • To be informed about national and international standards on energy efficiency in buildings
Course Content Building structure, heating, ventilation and air conditioning, the calculation of heat loss and insulation surfaces, water, fuel and electricity consumption in buildings, the national andinternational standards and regulations on energy efficiency in buildings.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Building structures
2 Air conditioning for comfort in buildings
3 Heat loss on outer surfaces of buildings
4 Heat loss on outer surfaces of buildings
5 Insulation
6 Heating ventilation and air conditioning systems
7 Heating ventilation and air conditioning systems
8 Heating ventilation and air conditioning systems
9 Illumination in buildings
10 Midterm Exam
11 Infrastructure services management in buildings
12 Infrastructure services management in buildings
13 Central heating in buildings
14 National and international standards and regulations on energy efficiency in buildings
15 National and international standards and regulations on energy efficiency in buildings
16 Final Exam

Sources

Other Sources 1. Energy Management Handbook, S. Doty, W.C. Turner, The Fairmont Press, 7th edition (2009)

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation 1 5
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation - -
Project 1 25
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 20
Final Exam/Final Jury 1 50
Toplam 4 100
Percentage of Semester Work 50
Percentage of Final Work 50
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Adequate knowledge of mathematics, physical sciences and the subjects specific to chemical engineering disciplines; the ability to apply theoretical and practical knowledge of these areas in the solution of complex engineering problems.
2 The ability to define, formulate, and solve complex engineering problems; the ability to select and apply proper analysis and modeling methods for this purpose.
3 The ability to design a complex system, process, device or product under realistic constraints and conditions in such a way as to meet the specific requirements; the ability to apply modern design methods for this purpose.
4 The ability to select, and use modern techniques and tools needed to analyze and solve complex problems encountered in chemical engineering practices; the ability to use information technologies effectively.
5 The ability to design experiments, conduct experiments, gather data, and analyze and interpret results for investigating complex engineering problems or research areas specific to engineering disciplines.
6 The ability to work efficiently in inter-, intra-, and multi-disciplinary teams; the ability to work individually.
7 Ability to communicate effectively in Turkish, both in writing and in writing; at least one foreign language knowledge; ability to write reports and understand written reports, to prepare design and production reports, to make presentations, to give clear and understandable instructions.
8 Recognition of the need for lifelong learning; the ability to access information, follow developments in science and technology, and adapt and excel oneself continuously.
9 Acting in conformity with the ethical principles; professional and ethical responsibility and knowledge of the standards employed in chemical engineering applications.
10 Knowledge of business practices such as project management, risk management, and change management; awareness of entrepreneurship and innovation; knowledge of sustainable development.
11 Knowledge of the global and social effects of chemical engineering practices on health, environment, and safety issues, and knowledge of the contemporary issues in engineering areas; awareness of the possible legal consequences of engineering practices.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 14 2 28
Presentation/Seminar Prepration 1 10 10
Project 1 20 20
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 10 10
Prepration of Final Exams/Final Jury 1 20 20
Total Workload 136