Stage Makeup (ART298) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Stage Makeup ART298 Fall and Spring 3 0 0 3 4
Pre-requisite Course(s)
N/A
Course Language English
Course Type Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Discussion.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives The course aims to enable students to acquire fundamental skills for theatrical makeup, which is used to visually enchance characters on the stage. By definition, theatrical makeup is more colorful and graphic compared to cosmetic makeup.
Course Learning Outcomes The students who succeeded in this course;
  • - Acquire relevant historical knowledge,
  • - Comprehend color theory,
  • - Learn how to use makeup tools by observing makeup sanitation processes,
  • - Understand implications of light and shadow for stage makeup,
  • - Apply mask making and trauma makeup techniques.
Course Content In line with the course objective and expected learning outcomes, the course will expose students to various aspects of theatrical makeup application for stage, such as historical context, products, tools and techniques.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 History of Makeup
2 History of Makeup
3 Hygiene, Sanitation, and Chemicals
4 Facial Anatomy
5 Mask history and Mask Making Practice
6 Color Theory of Makeup and Practice
7 Midterm
8 Light and Shadow
9 Project
10 Trauma Makeup
11 Trauma Makeup
12 Trauma Makeup
13 Corrective Makeup and Old Age Make up
14 Corrective Makeup and Old Age Make up
15 Seminar
16 Final Evaluation

Sources

Other Sources 1. Debreceni, T. (2013). Special Makeup Effects for Stage and Screen. Making and Applying Prosthetics. New York: Routledge.
2. Townsend, D. (2019). Foundations of Stage Makeup. New York: Routledge.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation 15 10
Laboratory - -
Application 2 20
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation 1 10
Project 1 10
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 20
Final Exam/Final Jury 1 30
Toplam 21 100
Percentage of Semester Work 70
Percentage of Final Work 30
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Adequate knowledge of mathematics, physical sciences and the subjects specific to chemical engineering disciplines; the ability to apply theoretical and practical knowledge of these areas in the solution of complex engineering problems.
2 The ability to define, formulate, and solve complex engineering problems; the ability to select and apply proper analysis and modeling methods for this purpose.
3 The ability to design a complex system, process, device or product under realistic constraints and conditions in such a way as to meet the specific requirements; the ability to apply modern design methods for this purpose.
4 The ability to select, and use modern techniques and tools needed to analyze and solve complex problems encountered in chemical engineering practices; the ability to use information technologies effectively.
5 The ability to design experiments, conduct experiments, gather data, and analyze and interpret results for investigating complex engineering problems or research areas specific to engineering disciplines.
6 The ability to work efficiently in inter-, intra-, and multi-disciplinary teams; the ability to work individually.
7 Ability to communicate effectively in Turkish, both in writing and in writing; at least one foreign language knowledge; ability to write reports and understand written reports, to prepare design and production reports, to make presentations, to give clear and understandable instructions.
8 Recognition of the need for lifelong learning; the ability to access information, follow developments in science and technology, and adapt and excel oneself continuously.
9 Acting in conformity with the ethical principles; professional and ethical responsibility and knowledge of the standards employed in chemical engineering applications.
10 Knowledge of business practices such as project management, risk management, and change management; awareness of entrepreneurship and innovation; knowledge of sustainable development.
11 Knowledge of the global and social effects of chemical engineering practices on health, environment, and safety issues, and knowledge of the contemporary issues in engineering areas; awareness of the possible legal consequences of engineering practices.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application 2 5 10
Special Course Internship
Field Work
Study Hours Out of Class 2 3 6
Presentation/Seminar Prepration 1 8 8
Project 1 8 8
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 10 10
Prepration of Final Exams/Final Jury 1 10 10
Total Workload 100