Jewelry Design (ART266) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Jewelry Design ART266 Fall and Spring 3 0 0 3 4
Pre-requisite Course(s)
N/A
Course Language Turkish
Course Type Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Discussion, Drill and Practice.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives Design preparation, metal and different material shaping and rolling; techniques, application using different materials, basic design information.
Course Learning Outcomes The students who succeeded in this course;
  • Knowledge of the techniques related to jewelry production.
Course Content Shape elements, point-line-surface relation, drawing techniques, form-shape, measure-ratio, light-dark, shadow-light, volume information, texture types and touch; hand tools; production using simple modeling techniques; cutting and leveling techniques, assembly and skidding procedures; design preparation, metal and different material shaping and

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 The first jewelry in prehistoric times, ancient Egyptian jewelry, jewelry art in Mesopotamia and Hittites. Greek (ancient Greek) jewelry art, Roman and Byzantine jewelry art
2 The art of jewelry in Turks-Göktürk. Uighur-Hunter art of jewelry. Seljuk and Anatolian jewelry, Ottoman jewelry art.
3 Geometric drawings, expansion of shapes in three dimensional system
4 Projection and drawing methods
5 Gaining the Competencies to Draw Designs
6 Tools and materials presentation and decoration techniques
7 By giving three-dimensional form; Preparing models from design
8 Midterm
9 Basic information on negative mold taking
10 Döküm öncesi ve sonrası işlemler
11 Basic information about positive dies casting
12 Mixed technical material design
13 Mixed technical material design
14 Basic information about retouching
15 Making original designed jewelry
16 Final Assessment

Sources

Other Sources 1. Köroğlu, G. (2004). Anadolu Uygarlıklarında Takı. İstanbul: Türk Eskiçağ Bilimleri Enstitüsü Yayınları.
2. Türe, A. (2005). Takının Öyküsü: Dünya Kuyumculuk Tarihi 1. İstanbul: Goldaş Kültür Yayınları.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation 15 10
Laboratory - -
Application 3 40
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation 3 20
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury - -
Final Exam/Final Jury 1 30
Toplam 22 100
Percentage of Semester Work 70
Percentage of Final Work 30
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Adequate knowledge of mathematics, physical sciences and the subjects specific to chemical engineering disciplines; the ability to apply theoretical and practical knowledge of these areas in the solution of complex engineering problems.
2 The ability to define, formulate, and solve complex engineering problems; the ability to select and apply proper analysis and modeling methods for this purpose.
3 The ability to design a complex system, process, device or product under realistic constraints and conditions in such a way as to meet the specific requirements; the ability to apply modern design methods for this purpose.
4 The ability to select, and use modern techniques and tools needed to analyze and solve complex problems encountered in chemical engineering practices; the ability to use information technologies effectively.
5 The ability to design experiments, conduct experiments, gather data, and analyze and interpret results for investigating complex engineering problems or research areas specific to engineering disciplines.
6 The ability to work efficiently in inter-, intra-, and multi-disciplinary teams; the ability to work individually.
7 Ability to communicate effectively in Turkish, both in writing and in writing; at least one foreign language knowledge; ability to write reports and understand written reports, to prepare design and production reports, to make presentations, to give clear and understandable instructions.
8 Recognition of the need for lifelong learning; the ability to access information, follow developments in science and technology, and adapt and excel oneself continuously.
9 Acting in conformity with the ethical principles; professional and ethical responsibility and knowledge of the standards employed in chemical engineering applications.
10 Knowledge of business practices such as project management, risk management, and change management; awareness of entrepreneurship and innovation; knowledge of sustainable development.
11 Knowledge of the global and social effects of chemical engineering practices on health, environment, and safety issues, and knowledge of the contemporary issues in engineering areas; awareness of the possible legal consequences of engineering practices.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application 3 7 21
Special Course Internship
Field Work
Study Hours Out of Class 4 3 12
Presentation/Seminar Prepration 3 4 12
Project
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury
Prepration of Final Exams/Final Jury 1 7 7
Total Workload 100