Separation Processes (CHE302) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Separation Processes CHE302 6. Semester 3 2 0 4 6
Pre-requisite Course(s)
CHE311
Course Language English
Course Type Compulsory Departmental Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery
Learning and Teaching Strategies .
Course Coordinator
Course Lecturer(s)
  • Assoc. Prof. Dr. Enver Güler
Course Assistants
Course Objectives
Course Learning Outcomes The students who succeeded in this course;
Course Content Mass transfer operations; binary distillation, liquid-liquid extraction, multicomponent separations, absorption, membrane separations, fluid-solid separations, adsorption.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction, Thermodynamics Chapters 1-2

Sources

Course Book 1. Course Book: Separation Process Principles, 3rd Edition, Seader, J. D., and Henley E. J., John Wiley & Sons, NY (2011)

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury - -
Final Exam/Final Jury - -
Toplam 0 0
Percentage of Semester Work
Percentage of Final Work 100
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Adequate knowledge of mathematics, physical sciences and the subjects specific to chemical engineering disciplines; the ability to apply theoretical and practical knowledge of these areas in the solution of complex engineering problems. X
2 The ability to define, formulate, and solve complex engineering problems; the ability to select and apply proper analysis and modeling methods for this purpose. X
3 The ability to design a complex system, process, device or product under realistic constraints and conditions in such a way as to meet the specific requirements; the ability to apply modern design methods for this purpose. X
4 The ability to select, and use modern techniques and tools needed to analyze and solve complex problems encountered in chemical engineering practices; the ability to use information technologies effectively. X
5 The ability to design experiments, conduct experiments, gather data, and analyze and interpret results for investigating complex engineering problems or research areas specific to engineering disciplines. X
6 The ability to work efficiently in inter-, intra-, and multi-disciplinary teams; the ability to work individually. X
7 Ability to communicate effectively in Turkish, both in writing and in writing; at least one foreign language knowledge; ability to write reports and understand written reports, to prepare design and production reports, to make presentations, to give clear and understandable instructions. X
8 Recognition of the need for lifelong learning; the ability to access information, follow developments in science and technology, and adapt and excel oneself continuously. X
9 Acting in conformity with the ethical principles; professional and ethical responsibility and knowledge of the standards employed in chemical engineering applications. X
10 Knowledge of business practices such as project management, risk management, and change management; awareness of entrepreneurship and innovation; knowledge of sustainable development. X
11 Knowledge of the global and social effects of chemical engineering practices on health, environment, and safety issues, and knowledge of the contemporary issues in engineering areas; awareness of the possible legal consequences of engineering practices.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours)
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class
Presentation/Seminar Prepration
Project
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury
Prepration of Final Exams/Final Jury
Total Workload 0