ECTS - Petrochemical Engineering
Petrochemical Engineering (CEAC470) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Petrochemical Engineering | CEAC470 | Area Elective | 3 | 0 | 0 | 3 | 5 |
Pre-requisite Course(s) |
---|
N/A |
Course Language | English |
---|---|
Course Type | Area Elective Courses |
Course Level | Bachelor’s Degree (First Cycle) |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture, Discussion, Question and Answer. |
Course Lecturer(s) |
|
Course Objectives | To familiarize students with petrochemical processes to describe existing and innovative emerging technologies for the production of synthesis gas, olefins, aromatics and their derivatives including industrial polyolefins and polyesters. To apply fundamental chemical engineering knowledge to industrial processes, such as steam reforming, steam cracking and catalytic reforming etc. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Introduction to petroleum refining and petrochemical industries, steam cracking and olefins production, emerging technologies for olefin production, catalytic reforming and aromatics (BTX) production, C8 aromatics, aromatics from pyrolysis gasoline and other sources, steam reforming and related processes. |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | Introduction to Petroleum Refining and Petrochemical Industries | Lecture Notes |
2 | Steam Cracking and Olefins Production | Lecture Notes |
3 | Steam Cracking and Olefins Production | Lecture Notes |
4 | Catalytic Reforming and Aromatics (BTX) Production | Lecture Notes |
5 | Catalytic Reforming and Aromatics (BTX) Production | Lecture Notes |
6 | Midterm-I | |
7 | C8 aromatics -Separation -Isomerisation -Hydrodealkylation and disproportination Aromatics from pyrolysis gasoline and other sources Aromatics production from lower alkanes (Z-forming) | Lecture Notes |
8 | C8 aromatics -Separation -Isomerisation -Hydrodealkylation and disproportination Aromatics from pyrolysis gasoline and other sources Aromatics production from lower alkanes (Z-forming) | Lecture Notes |
9 | Steam Reforming and related processes | Lecture Notes |
10 | Steam Reforming and related processes | Lecture Notes |
11 | Ethylene Derivatives Propylene Derivatives C4 olefins derivatives | Lecture Notes |
12 | Ethylene Derivatives Propylene Derivatives C4 olefins derivatives | Lecture Notes |
13 | Project Presentations-1 | |
14 | Benzene derivatives Toluene and Xylene derivatives | Lecture Notes |
15 | Project Presentations-2 | |
16 | FINAL EXAMINATION |
Sources
Other Sources | 1. A. Chauvel and Gilles Lefebvre, Petrochemical Processes: Technical and Economic Characteristics, Vol.1: Synthesis Gas Derivatives and Major Hydrocarbons; Vol.2: Major Oxygenated, Chlorinated and Nitrated Derivatives, IFP Publications, Gulf Publishing C |
---|---|
2. Peter Wiseman, Petrochemicals, UMIST Series in Science and technology, John Wiley & Sons (1986). | |
3. The Chemistry of Methane, Ethylene,Propylene, C4 Olefins,Benzene, Toluene Xylenes, Workshop Notes, CHEM SYSTEMS (1999). | |
4. Bilsen Beşergil, Hampetrolden Petrokimyasallara: El Kitabı, Tükelmat A.Ş.,İzmir (2007). | |
5. James H. Gary, Glenn E.Handwerk & Mark J.Kaiser, Petroleum Refining: Technology and Economics, Fifth Edn., CRC Press (2007). | |
6. T. Alsahaf and M. Fahim, Fundamentals of Petroleum Refining, Elsevier (2010) |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | - | - |
Laboratory | - | - |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | 5 | 20 |
Presentation | - | - |
Project | 1 | 20 |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 1 | 20 |
Final Exam/Final Jury | 1 | 40 |
Toplam | 8 | 100 |
Percentage of Semester Work | 60 |
---|---|
Percentage of Final Work | 40 |
Total | 100 |
Course Category
Core Courses | |
---|---|
Major Area Courses | X |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Adequate knowledge of mathematics, physical sciences and the subjects specific to chemical engineering disciplines; the ability to apply theoretical and practical knowledge of these areas in the solution of complex engineering problems. | X | ||||
2 | The ability to define, formulate, and solve complex engineering problems; the ability to select and apply proper analysis and modeling methods for this purpose. | X | ||||
3 | The ability to design a complex system, process, device or product under realistic constraints and conditions in such a way as to meet the specific requirements; the ability to apply modern design methods for this purpose. | X | ||||
4 | The ability to select, and use modern techniques and tools needed to analyze and solve complex problems encountered in chemical engineering practices; the ability to use information technologies effectively. | X | ||||
5 | The ability to design experiments, conduct experiments, gather data, and analyze and interpret results for investigating complex engineering problems or research areas specific to engineering disciplines. | X | ||||
6 | The ability to work efficiently in inter-, intra-, and multi-disciplinary teams; the ability to work individually. | X | ||||
7 | Ability to communicate effectively in Turkish, both in writing and in writing; at least one foreign language knowledge; ability to write reports and understand written reports, to prepare design and production reports, to make presentations, to give clear and understandable instructions. | X | ||||
8 | Recognition of the need for lifelong learning; the ability to access information, follow developments in science and technology, and adapt and excel oneself continuously. | X | ||||
9 | Acting in conformity with the ethical principles; professional and ethical responsibility and knowledge of the standards employed in chemical engineering applications. | X | ||||
10 | Knowledge of business practices such as project management, risk management, and change management; awareness of entrepreneurship and innovation; knowledge of sustainable development. | X | ||||
11 | Knowledge of the global and social effects of chemical engineering practices on health, environment, and safety issues, and knowledge of the contemporary issues in engineering areas; awareness of the possible legal consequences of engineering practices. |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 16 | 3 | 48 |
Laboratory | |||
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 16 | 2 | 32 |
Presentation/Seminar Prepration | 1 | 20 | 20 |
Project | 5 | 1 | 5 |
Report | |||
Homework Assignments | 1 | 15 | 15 |
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 1 | 18 | 18 |
Prepration of Final Exams/Final Jury | 1 | 20 | 20 |
Total Workload | 158 |