ECTS - Electric and Hybrid Vehicles

Electric and Hybrid Vehicles (AE434) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Electric and Hybrid Vehicles AE434 Area Elective 3 1 0 4 5
Pre-requisite Course(s)
(EE234 veya EE210)
Course Language English
Course Type Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Discussion, Question and Answer, Problem Solving.
Course Coordinator
Course Lecturer(s)
  • Instructor Dr. Ali Emin
Course Assistants
Course Objectives This course aims to give the students the understanding of the electric and hybrid vehicle concept and the theoretical background on which this concept is based.
Course Learning Outcomes The students who succeeded in this course;
  • Define the electric car concept, electric/hybrid vehicle types and components.
  • Model the road resistance forces.
  • Model the energy flow from source to wheel in electric/hybrid vehicle.
  • Model the speed /torque coupling in a hybrid drivetrain.
  • Optimal hybridization ratio.
  • Model the battery energy source.
  • Define the alternative energy sources and stores.
  • Identify the definition and function of the electric motors.
Course Content Electric vehicle components; history of electric vehicles; types of electric vehicles; batteries and battery modeling; alternative energy sources and stores (photovoltaics, flywheels, capacitors, fuel cells); DC and AC electric motors, brushed DC motors, and brushless electric motors; power electronics and motor drives; electric vehicle drivetrain.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Environmental Impact and History of Modern Transportation
2 Fundamentals of Vehicle Propulsion (Internal Combustion Engine and Electric motor) and Braking
3 Fundamentals of Vehicle Transmission
4 Architecture of Electric and Hybrid Vehicles
5 Design Principle of Series (Electrical Coupling) Hybrid Electric Drivetrain
6 Parallel (Mechanically Coupled) Hybrid Electric Drivetrain Design
7 Mild Hybrid Electric Drivetrain Design
8 Peaking Power Sources and Energy Storage Midterm
9 Fundamentals of Regenerative Braking
10 Fuel Cell Hybrid Electric Drivetrain Design
11 Design of Full-Size-Engine HEV with Optimal Hybridization Ratio
12 DC and AC Electric Motors
13 Brushless Electric Motors
14 Brushed DC Motors
15 Final Exam

Sources

Course Book 1. - Modern Electric, Hybrid Electric, and Fuel Cell Vehicles, by M. Ehsani, 3rd Edition, CRC Press, Taylor & Francis Group (2018)
2. - Electric Machinery Fundamentals, by Stephen J. Chapman, 5th Edition, McGraw Hill (2005)

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation 15 5
Laboratory 4 15
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 1 5
Presentation 1 5
Project 1 20
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 20
Final Exam/Final Jury 1 30
Toplam 24 100
Percentage of Semester Work
Percentage of Final Work 100
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Accumulated knowledge on mathematics, science and mechatronics engineering; ability to apply the theoretical and applied knowledge to model and analyze mechatronics engineering problems.
2 Ability to identify, define and formulate problems related to the field and to select and apply appropriate analysis and modeling methods to solve these problems.
3 Ability to design a complex system, product, component or process to meet the requirements under realistic constraints and conditions; ability to apply contemporary design methodologies; ability to implement effective engineering creativity techniques in mechatronics engineering. (Realistic constraints and conditions may include economics, environment, sustainability, producibility, ethics, human health, social and political problems.)
4 Ability to develop, select and use modern techniques, skills and tools for application of mechatronics engineering and robot technologies; ability to use information and communications technologies effectively.
5 Ability to design and perform experiments, collect and analyze data and assess the results for investigated problems on mechatronics engineering and robot technologies.
6 Ability to work effectively on intra-disciplinary and multi-disciplinary teams; ability for individual work; ability to communicate and collaborate/cooperate effectively with other disciplines and scientific/engineering domains or working areas, ability to work with other disciplines including electrical & electronics and computer engineering.
7 Ability to express creative and original concepts and ideas effectively in Turkish and English language, oral and written, and technical drawings.
8 Ability to reach information on different subjects required by the wide spectrum of applications of mechatronics engineering, criticize, assess and improve the knowledge-base; consciousness on the necessity of improvement and sustainability as a result of life-long learning; monitoring the developments on science and technology; awareness on entrepreneurship, innovative and sustainable development and ability for continuous renovation.
9 Consciousness on professional and ethical responsibility, competency on improving professional consciousness and contributing to the improvement of profession itself.
10 Knowledge on the applications at business life such as project management, risk management and change management and competency on planning, managing and leadership activities on the development of capabilities of workers who are under his/her responsibility working around a project.
11 Knowledge about the global, social and individual effects of mechatronics engineering applications on the human health, environment and security and cultural values and problems of the era; consciousness on these issues; awareness of legal results of engineering solutions.
12 Competency on defining, analyzing and surveying databases and other sources, proposing solutions based on research work and scientific results and communicate and publish numerical and conceptual solutions in the field of mechatronics engineering.
13 Consciousness on the environment and social responsibility, competencies on observation, improvement and modify and implementation of projects for the society and social relations and be an individual within the society in such a way that planning, improving or changing the norms with a criticism.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 14 4 56
Laboratory 4 2 8
Application
Special Course Internship
Field Work 14 1 14
Study Hours Out of Class 7 3 21
Presentation/Seminar Prepration 1 3 3
Project 1 10 10
Report
Homework Assignments 1 3 3
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 6 6
Prepration of Final Exams/Final Jury 1 10 10
Total Workload 131