ECTS - Automotive Manufacturing Processes Using Lightweight Metals
Automotive Manufacturing Processes Using Lightweight Metals (AE411) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Automotive Manufacturing Processes Using Lightweight Metals | AE411 | Area Elective | 3 | 1 | 0 | 3 | 5 |
Pre-requisite Course(s) |
---|
MATE207 |
Course Language | English |
---|---|
Course Type | Elective Courses |
Course Level | Bachelor’s Degree (First Cycle) |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture, Discussion, Drill and Practice, Problem Solving. |
Course Lecturer(s) |
|
Course Objectives | The objective of the course is to introduce the developed materials in automotive sector, to provide the basic knowledge needed to explore the application of these new materials in automobile field, and to develop knowledge in recent trends in manufacturing techniques of automobile components. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Advanced lightweight metals and manufacturing processes for automotive applications; metallurgy of lightweight automotive metals; engineering joining processes for metals; design for manufacturing using lightweight automotive metals. |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | Introduction to the concept of lightweighting in Automotive Engineering I | Lecture notes and presentations on Moodle website |
2 | Introduction to the concept of lightweighting in Automotive Engineering II | Lecture notes and presentations on Moodle website |
3 | The traditional manufacturing Processes (such as Machining, Bulk Forming, Casting, Forging, etc.) | Lecture notes and presentations on Moodle website |
4 | Manufacturing Technologies Aluminum such as Foam, Extrusion, Hydroforming, Roll-forming, Molding and 3D Printing | Lecture notes and presentations on Moodle website |
5 | Advanced lightweight metals and manufacturing processes for automotive applications (AHSS, Advance High Strength Steels) | Lecture notes and presentations on Moodle website |
6 | Advanced lightweight metals and manufacturing processes for automotive applications (Aluminum and alloys) | Lecture notes and presentations on Moodle website |
7 | Midterm I and Term project activities | |
8 | Advanced lightweight metals and manufacturing processes for automotive applications (Magnesium and alloys) | Lecture notes and presentations on Moodle website |
9 | Engineering metal Joining technology (Types, design method, mechanical performance, application, joining processes) | Lecture notes and presentations on Moodle website |
10 | The Metallurgical terms used in Mechanics of Metals (Resilience and toughness, Rigidity and Stiffness, Stiffness and Weight Ratio, stress, strain, etc.) | Lecture notes and presentations on Moodle website |
11 | Design for manufacturing using Lightweight Automotive Metals, Aluminum and alloys | Lecture notes and presentations on Moodle website |
12 | Design for manufacturing using Lightweight Automotive Metals, Magnesium and alloys | Lecture notes and presentations on Moodle website |
13 | Design for manufacturing using Lightweight Automotive Metals, AHSS | Lecture notes and presentations on Moodle website |
14 | Presentations of term projects |
Sources
Course Book | 1. Materials, design and manufacturing for lightweight vehicles, Prof. P. K. Mallick, Woodhead Publishing/CRC Press, 2010. |
---|---|
Other Sources | 2. Automotive Engineering: Lightweight, Functional, and Novel Materials, Brian Cantor, P. Grant, C. Johnston, February 19, 2008, ISBN 9780750310017. |
3. Lightweight Composite Structures in Transport, Design, Manufacturing, Analysis and Performance, by James Njuguna, 29th January 2016, eBook ISBN: 9781782423430,ü Hardcover ISBN: 9781782423256. |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | - | - |
Laboratory | 1 | 10 |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | 10 | 10 |
Presentation | 1 | 15 |
Project | 1 | 15 |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 1 | 20 |
Final Exam/Final Jury | 1 | 30 |
Toplam | 15 | 100 |
Percentage of Semester Work | |
---|---|
Percentage of Final Work | 100 |
Total | 100 |
Course Category
Core Courses | X |
---|---|
Major Area Courses | |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Accumulated knowledge on mathematics, science and mechatronics engineering; ability to apply the theoretical and applied knowledge to model and analyze mechatronics engineering problems. | |||||
2 | Ability to identify, define and formulate problems related to the field and to select and apply appropriate analysis and modeling methods to solve these problems. | |||||
3 | Ability to design a complex system, product, component or process to meet the requirements under realistic constraints and conditions; ability to apply contemporary design methodologies; ability to implement effective engineering creativity techniques in mechatronics engineering. (Realistic constraints and conditions may include economics, environment, sustainability, producibility, ethics, human health, social and political problems.) | |||||
4 | Ability to develop, select and use modern techniques, skills and tools for application of mechatronics engineering and robot technologies; ability to use information and communications technologies effectively. | |||||
5 | Ability to design and perform experiments, collect and analyze data and assess the results for investigated problems on mechatronics engineering and robot technologies. | |||||
6 | Ability to work effectively on intra-disciplinary and multi-disciplinary teams; ability for individual work; ability to communicate and collaborate/cooperate effectively with other disciplines and scientific/engineering domains or working areas, ability to work with other disciplines including electrical & electronics and computer engineering. | |||||
7 | Ability to express creative and original concepts and ideas effectively in Turkish and English language, oral and written, and technical drawings. | |||||
8 | Ability to reach information on different subjects required by the wide spectrum of applications of mechatronics engineering, criticize, assess and improve the knowledge-base; consciousness on the necessity of improvement and sustainability as a result of life-long learning; monitoring the developments on science and technology; awareness on entrepreneurship, innovative and sustainable development and ability for continuous renovation. | |||||
9 | Consciousness on professional and ethical responsibility, competency on improving professional consciousness and contributing to the improvement of profession itself. | |||||
10 | Knowledge on the applications at business life such as project management, risk management and change management and competency on planning, managing and leadership activities on the development of capabilities of workers who are under his/her responsibility working around a project. | |||||
11 | Knowledge about the global, social and individual effects of mechatronics engineering applications on the human health, environment and security and cultural values and problems of the era; consciousness on these issues; awareness of legal results of engineering solutions. | |||||
12 | Competency on defining, analyzing and surveying databases and other sources, proposing solutions based on research work and scientific results and communicate and publish numerical and conceptual solutions in the field of mechatronics engineering. | |||||
13 | Consciousness on the environment and social responsibility, competencies on observation, improvement and modify and implementation of projects for the society and social relations and be an individual within the society in such a way that planning, improving or changing the norms with a criticism. |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 14 | 2 | 28 |
Laboratory | |||
Application | 14 | 2 | 28 |
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | |||
Presentation/Seminar Prepration | 1 | 10 | 10 |
Project | 1 | 20 | 20 |
Report | |||
Homework Assignments | 10 | 2 | 20 |
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 1 | 8 | 8 |
Prepration of Final Exams/Final Jury | 1 | 10 | 10 |
Total Workload | 124 |