ECTS - Simple Restoration Techniques in Artworks

Simple Restoration Techniques in Artworks (ART286) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Simple Restoration Techniques in Artworks ART286 Fall and Spring 3 0 0 3 4
Pre-requisite Course(s)
N/A
Course Language Turkish
Course Type Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Discussion, Drill and Practice.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives The methods used in the restoration of works of art are examined in written, visual materials and practiced experience.
Course Learning Outcomes The students who succeeded in this course;
  • Examine the practices related to the preservation of material and cultural assets that have developed throughout history and experiences simple repair methods which they can use in everyday life
  • Knowledge about the applications made for the preservation of works of art made from different materials and ingredients, and about the importance of collaboration among disciplines.
Course Content General principles and assumptions about artifact repair, simple repairs using different modern materials.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Basic concepts and principles related to artifact restoration
2 Factors causing material deterioration
3 Types of intervention, materials and methods
4 Organic materials - Wood and textile objects
5 Organic materials - Paper and leather objects
6 Examination of organic materials in Painting, Sculpture and Ethnography Museum and discussion
7 Inorganic materials - Glass and ceramic objects
8 Inorganic materials - Gypsum and composite objects
9 Inorganic materials - Metal and stone objects
10 Practice - Glass; Crushing - part detection- assembling
11 Practice - Ceramics; Crushing - part detection - assembling
12 Practice - Ceramics; Fitting- filling - retouching
13 Practice - Stone; Crushing - part detection and assembling
14 Practice - Stone; Fitting, filling- retouching
15 Examination of inorganic materials at the Anatolian Civilizations Museum and discussion
16 Final Evaluation

Sources

Other Sources 1. İBB KUDEB Restorasyon Konservasyon Dergileri.
2. Zakar, L. ve Eyüpgiller, K. K. (2015). Mimari Restorasyon Koruma Teknik ve Yöntemleri Restorasyon Uygulamalarında Kullanılan Çağdaş Yöntemler. İstanbul: Yem Yayınları.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation 15 10
Laboratory - -
Application 5 30
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury - -
Final Exam/Final Jury 1 30
Toplam 21 70
Percentage of Semester Work 70
Percentage of Final Work 30
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Accumulated knowledge on mathematics, science and mechatronics engineering; ability to apply the theoretical and applied knowledge to model and analyze mechatronics engineering problems.
2 Ability to identify, define and formulate problems related to the field and to select and apply appropriate analysis and modeling methods to solve these problems.
3 Ability to design a complex system, product, component or process to meet the requirements under realistic constraints and conditions; ability to apply contemporary design methodologies; ability to implement effective engineering creativity techniques in mechatronics engineering. (Realistic constraints and conditions may include economics, environment, sustainability, producibility, ethics, human health, social and political problems.)
4 Ability to develop, select and use modern techniques, skills and tools for application of mechatronics engineering and robot technologies; ability to use information and communications technologies effectively.
5 Ability to design and perform experiments, collect and analyze data and assess the results for investigated problems on mechatronics engineering and robot technologies.
6 Ability to work effectively on intra-disciplinary and multi-disciplinary teams; ability for individual work; ability to communicate and collaborate/cooperate effectively with other disciplines and scientific/engineering domains or working areas, ability to work with other disciplines including electrical & electronics and computer engineering.
7 Ability to express creative and original concepts and ideas effectively in Turkish and English language, oral and written, and technical drawings. X
8 Ability to reach information on different subjects required by the wide spectrum of applications of mechatronics engineering, criticize, assess and improve the knowledge-base; consciousness on the necessity of improvement and sustainability as a result of life-long learning; monitoring the developments on science and technology; awareness on entrepreneurship, innovative and sustainable development and ability for continuous renovation.
9 Consciousness on professional and ethical responsibility, competency on improving professional consciousness and contributing to the improvement of profession itself.
10 Knowledge on the applications at business life such as project management, risk management and change management and competency on planning, managing and leadership activities on the development of capabilities of workers who are under his/her responsibility working around a project.
11 Knowledge about the global, social and individual effects of mechatronics engineering applications on the human health, environment and security and cultural values and problems of the era; consciousness on these issues; awareness of legal results of engineering solutions. X
12 Competency on defining, analyzing and surveying databases and other sources, proposing solutions based on research work and scientific results and communicate and publish numerical and conceptual solutions in the field of mechatronics engineering.
13 Consciousness on the environment and social responsibility, competencies on observation, improvement and modify and implementation of projects for the society and social relations and be an individual within the society in such a way that planning, improving or changing the norms with a criticism. X

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application 3 12 36
Special Course Internship
Field Work
Study Hours Out of Class 3 1 3
Presentation/Seminar Prepration
Project
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury
Prepration of Final Exams/Final Jury 1 13 13
Total Workload 100