ECTS - Advanced Mathematics for Engineers

Advanced Mathematics for Engineers (ME601) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Advanced Mathematics for Engineers ME601 Area Elective 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type Elective Courses
Course Level Ph.D.
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Question and Answer, Problem Solving.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives
Course Learning Outcomes The students who succeeded in this course;
Course Content The objective of this course is to improve the skills of students in mathematics in advanced topic such as linear spaces and operators, matrix algebra, tensor fields, complex analysis and calculation of variations.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation

Sources

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury - -
Final Exam/Final Jury - -
Toplam 0 0
Percentage of Semester Work
Percentage of Final Work 100
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 An ability to solve mathematically defined advanced engineering problems analytically. X
2 An ability to solve mathematically defined advanced engineering problems numerically.
3 An ability to use the technology and the literature effectively in the civil engineering research domain.
4 An ability to conduct qualitative research in civil engineering and publish articles in conferences and journals in the area.
5 Ability to design and apply theoretical, experimental and modeling based researches; analyze and solve complex problems encountered in this process.
6 To complete and apply knowledge by using scientific methods using uncertain, limited or incomplete data; use information from different disciplines. X

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours)
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class
Presentation/Seminar Prepration
Project
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury
Prepration of Final Exams/Final Jury
Total Workload 0