Operator Theory (MATH658) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Operator Theory MATH658 Area Elective 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type Elective Courses
Course Level Ph.D.
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Discussion, Question and Answer.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives This is an introductory course in Operator Theory and its applications. We will start with a short review of Banach and Hilbert Spaces and their linear bounded operators, then we turn to the Spectral Theory of linear bounded operators. Classes of Hilbert Space operators that appear frequently in applications, e.g. self adjoint, positive operators, are considered in detail. The course is aimed at Mathematics students who want to pursue a career in Analysis and its applications, but Math students from other domains and also graduate engineering students who want to understand mathematical foundations of many of the subjects considered in Engineering Mathematics are welcome as well.
Course Learning Outcomes The students who succeeded in this course;
  • Know the basics about spectral theory of linear bounded operators
  • Know spectral properties of bounded self adjoint operators
  • Know about positivity and positive operators
  • Could apply theoretical information to concrete problems
Course Content This is an introductory course in Operator Theory and its applications. We will start with a short review of Banach and Hilbert Spaces and their linear bounded operators, then we turn to the Spectral Theory of linear bounded operators. Classes of Hilbert Space operators that appear frequently in applications, e.g. self adjoint, positive operators, are considered in detail.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 A Review of Normed and Banach Spaces [1], 2.2, 2.6, 2.7 [2], 3.1
2 Bounded operators on Normed Spaces [1], 2.7 [2], 4.3
3 A Review of Inner Product and Hilbert Spaces [1], 3.1,3.3,3.4 [2], 2.2—2.5
4 Hilbert Adjoint Operator [1], 3.8,3.9
5 Spectral Theory in Normed Spaces: Introduction [1], 7.2
6 Spectral Theory of Bounded Linear Operators [1], 7.3
7 Spectral Mapping Theorem [1], 7.4
8 Review and Midterm
9 Spectral Theory of Bounded Self Adjoint Linear Operators [1], 9.1
10 Spectral Theory of Bounded Self Adjoint Linear Operators [1], 9.2
11 Positive Operators [1], 9.3
12 Square Roots of a Positive Operator [1], 9.4
13 Projection Operators [1], 9.5
14 Further Properties of Projections [1], 9.6
15 Further properties of Projections [1], 9.6
16 Review

Sources

Course Book 1. E. Kreyszig, Introductory Functional Analysis with Applications, Wiley Clas. Lib. Ed, 1989.
2. G. Chacón, H. Rafeiro, J. Vallejo, Functional Analysis, De Gruyter, 2017.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 3 30
Presentation 1 20
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 20
Final Exam/Final Jury 1 30
Toplam 6 100
Percentage of Semester Work 70
Percentage of Final Work 30
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Alanında, bağımsız olarak, bir problem kurgulayabilir, çözüm yöntemi geliştirerek problemi çözebilir ve sonuçları değerlendirebilir X
2 Matematiğin temel alanlarında ve kendi uzmanlığı olarak seçtiği alanda gerekli alt yapıyı oluşturur. X
3 Matematik literatürünü ve özel olarak kendi araştırma konusu ile ilgili ulusal ve uluslararası güncel yayınları takip edebilir ve bunlardan kendi araştırma konusu ile ilgili olanları çalışmalarında kullanabilir X
4 Bilimsel etik değerleri ve kuralları dikkate alır ve mesleki ve toplumsal yaşamda kullanabilir X
5 Kendi çalışmalarının sonuçlarını veya belli bir konudaki güncel çalışmaları ve bulguları, çeşitli bilimsel toplantılarda topluluk önünde Türkçe ve İngilizce olarak sunabilir ve tartışmalara katılabilir. X
6 Gerek bireysel, gerek bir çalışma grubunun üyesi olarak çalışabilme becerisini geliştirir X
7 Yaratıcı ve eleştirel düşünme, problem çözme, özgün bir çalışma üretme becerisini geliştirir. Bilimsel gelişmeleri takip eder, özümsediği bilgilerin analiz, sentez ve değerlendirmesini yapabilir. X
8 Kazandığı bilgi, beceri ve yetkinlikleri yaşam boyu geliştirmeye açık olur. X
9 Alanında özümsediği bilgiyi ve problem çözme yeteneğini disiplinler arası çalışmalarda uygulayabilir; karşılaşılan problemleri matematiksel modellerle ifade ederek, matematiksel bakış açısı ile farklı çözüm yöntemleri önerir. X
10 Matematik temelli yazılımları, bilişim ve iletişim teknolojilerini bilimsel amaçlı kullanabilir. X

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 14 2 28
Presentation/Seminar Prepration 1 10 10
Project
Report
Homework Assignments 3 5 15
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 12 12
Prepration of Final Exams/Final Jury 1 12 12
Total Workload 125