ECTS - Bernstein Polynomials
Bernstein Polynomials (MATH555) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Bernstein Polynomials | MATH555 | Area Elective | 3 | 0 | 0 | 3 | 5 |
Pre-requisite Course(s) |
---|
N/A |
Course Language | English |
---|---|
Course Type | Elective Courses |
Course Level | Ph.D. |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture, Question and Answer, Problem Solving. |
Course Lecturer(s) |
|
Course Objectives | This graduate level course is designed to provide math students with the knowledge of basic facts about the Bernstein polynomials and their role in analysis and approximation theory, as well as demonstrate their applications and generalizations. For this purpose, the course includes topics on positive linear operators, Kantorovich polynomials, and the De Casteljau algorithm, which are closely related to the Bernstein polynomials. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Uniform continuity, uniform convergence, Bernstein polynomials, Weierstrass approximation theorem, positive linear operators, Popoviciu theorem, Voronovskaya theorem, simultaneous approximation, shape-preserving properties, De Casteljau algorithm, complex Bernstein polynomials, Kantorovich polynomials. |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | Uniform continuity, Cantor’s theorem. Uniform convergence of sequences and series. | [2], Ch. 1, Sec. 1.5-1.6 |
2 | Properties of uniformly convergent sequences. Tests for uniform convergence. | Davis, Ch. 1, Sec. 1.6-1.7 |
3 | Bernstein polynomials, their definition and elementary properties. Weierstrass approximation theorem. | [1], Ch. 1, Sec. 1.1, [2], Ch. VI, Sec. 6.1,6.2 |
4 | Positive linear operators, Korovkin’s theorem. Modulus of continuity and its properties. | [2], Ch. 6, Sec.6.6 |
5 | Moments and central moments. Popoviciu theorem. | [2], Ch. 1, Sec. 1.6 |
6 | Voronovskaya theorem and modified Bernstein polynomials. | [2], Ch. 6, Sec. 6.3, [1], Ch. 1, Sec. 1.6 |
7 | Forward differences representation of the Bernstein polynomials and their derivatives. | [1], Ch. 1, Sec. 1.4 |
8 | Simultaneous approximation of a function and its derivatives by the Bernstein polynomials. | [2], Ch. 6, Sec. 6.3, [1], Ch. 1, Sec. 1.8 |
9 | Shape-preserving properties of the Bernstein polynomials. | [1], Ch. 1, Sec. 1.7 |
10 | De Catseljau algorithm for the Bernstein polynomials. | [3], Sec.2 |
11 | Bernstein polynomials on an unbounded interval. Chlodovsky’s theorems. | [1], Ch. 2, Sec. 2.3 |
12 | Complex Bernstein polynomials. | [1], Ch. 4, Sec. 4.1 |
13 | Kantorovich polynomials, their properties. | [1], Ch.2, Sec. 2.1 |
14 | Approximation of continuous and integrable functions by Kantorovich polynomials. | [1], Ch.2, Sec. 2.2 |
15 | Review | |
16 | Final exam |
Sources
Course Book | 1. [1] G. G. Lorentz, Bernstein polynomials, Chelsea, NY, 1986. |
---|---|
2. [2] Ph. J. Davis, Interpolation and Approximation, Dover, 1976. | |
Other Sources | 3. W. Boehm, A. Müller, On de Casteljau's algorithm, |
4. 2. R.A.Devore, G.G.Lorentz, Constructive Approximation, Springer, | |
5. E. W. Cheney, “Introduction to approximation theory”, Chelsea, NY, 1966 |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | - | - |
Laboratory | - | - |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | 2 | 10 |
Presentation | 1 | 10 |
Project | - | - |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 2 | 40 |
Final Exam/Final Jury | 1 | 40 |
Toplam | 6 | 100 |
Percentage of Semester Work | 60 |
---|---|
Percentage of Final Work | 40 |
Total | 100 |
Course Category
Core Courses | X |
---|---|
Major Area Courses | |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Alanında, bağımsız olarak, bir problem kurgulayabilir, çözüm yöntemi geliştirerek problemi çözebilir ve sonuçları değerlendirebilir | X | ||||
2 | Matematiğin temel alanlarında ve kendi uzmanlığı olarak seçtiği alanda gerekli alt yapıyı oluşturur. | X | ||||
3 | Matematik literatürünü ve özel olarak kendi araştırma konusu ile ilgili ulusal ve uluslararası güncel yayınları takip edebilir ve bunlardan kendi araştırma konusu ile ilgili olanları çalışmalarında kullanabilir | X | ||||
4 | Bilimsel etik değerleri ve kuralları dikkate alır ve mesleki ve toplumsal yaşamda kullanabilir | X | ||||
5 | Kendi çalışmalarının sonuçlarını veya belli bir konudaki güncel çalışmaları ve bulguları, çeşitli bilimsel toplantılarda topluluk önünde Türkçe ve İngilizce olarak sunabilir ve tartışmalara katılabilir. | X | ||||
6 | Gerek bireysel, gerek bir çalışma grubunun üyesi olarak çalışabilme becerisini geliştirir | X | ||||
7 | Yaratıcı ve eleştirel düşünme, problem çözme, özgün bir çalışma üretme becerisini geliştirir. Bilimsel gelişmeleri takip eder, özümsediği bilgilerin analiz, sentez ve değerlendirmesini yapabilir. | X | ||||
8 | Kazandığı bilgi, beceri ve yetkinlikleri yaşam boyu geliştirmeye açık olur. | X | ||||
9 | Alanında özümsediği bilgiyi ve problem çözme yeteneğini disiplinler arası çalışmalarda uygulayabilir; karşılaşılan problemleri matematiksel modellerle ifade ederek, matematiksel bakış açısı ile farklı çözüm yöntemleri önerir. | X | ||||
10 | Matematik temelli yazılımları, bilişim ve iletişim teknolojilerini bilimsel amaçlı kullanabilir. | X |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | |||
Laboratory | |||
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 14 | 3 | 42 |
Presentation/Seminar Prepration | 1 | 5 | 5 |
Project | |||
Report | |||
Homework Assignments | 2 | 3 | 6 |
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 2 | 7 | 14 |
Prepration of Final Exams/Final Jury | 1 | 10 | 10 |
Total Workload | 77 |