ECTS - Probabilistic Methods in Engineering

Probabilistic Methods in Engineering (MDES618) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Probabilistic Methods in Engineering MDES618 Area Elective 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type Elective Courses
Course Level Ph.D.
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives The aim of the course is to study basic methods of probability theory and mathematical statistics and to demonstrate the possible applications. Examples related to service systems, reliability, algorithms, and other subjects are given throughout the course. The course is constructed for students of engineering departments, using mathematics for its applications.
Course Learning Outcomes The students who succeeded in this course;
  • Find reliability functions and mean times to failure for systems of different types. Understand the notion of stochastic process and analyze different types of stochastic processes. Understand basic facts concerning Markov chains. Know special probability distributions such as Poisson, exponential, Erlang. Apply the methods of statistical inference.
Course Content Basic notions of probability theory, reliability theory, notion of a stochastic process, Poisson processes, Markov chains, statistical inference.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Sample space, random events, probability. Conditional probability. Independence. Ch.1.1-1.10
2 Random variables and probability distributions. Random vectors. Ch. 2.3, 2.4, 3.1, 3.6
3 Reliability theory. Finding reliabilities of different systems. Redundancy. Ch. 3.6-3.7
4 Failure rate and hazard function. IFR/DFR distributions. Ch. 3.3
5 Definition and examples of stochastic processes, their types. Ch. 6.1, 6.2
6 The Poisson process and its generalizations Ch. 6.5, 6.4
7 Random incidence. Midterm I Ch. 6.7
8 Markov chains: Markov property, transition probabilities, transition graph. Chapman-Kolmogorov equations. Ch. 7.1, 7.2
9 Classification of states and limiting probabilities. Regular chains and equilibrium. Ch. 7.3
10 Absorbing Markov chains. Fundamental matrix. Ch. 7.9
11 Random samples. Estimators, their characteristics. Ch. 10.1-10.2
12 Point and interval estimation. Midterm II Ch.10.2.3
13 Hypothesis testing. The null and alternative hypotheses, type I and type II errors. One-sided and two-sided tests. Tests on the population mean. Ch. 10.3.1
14 Tests on the population variance. Goodness-of-fit tests Ch.10.3.3, 10.3.4
15 Overall review -
16 Final exam -

Sources

Course Book 1. K. S. Trivedi, Probability and Statistics with Reliability, Queueing, and Computer Science Applications, 2nd Edition, Wiley, 2002.
Other Sources 2. Sheldon Ross, Introduction to Probability Models. Academic Press, 1994
3. T. Aven, U. Jensen, Stochastic models in reliability, Springer, 1999

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics 2 20
Homework Assignments - -
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 40
Final Exam/Final Jury 1 40
Toplam 5 100
Percentage of Semester Work 60
Percentage of Final Work 40
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Alanında, bağımsız olarak, bir problem kurgulayabilir, çözüm yöntemi geliştirerek problemi çözebilir ve sonuçları değerlendirebilir X
2 Matematiğin temel alanlarında ve kendi uzmanlığı olarak seçtiği alanda gerekli alt yapıyı oluşturur. X
3 Matematik literatürünü ve özel olarak kendi araştırma konusu ile ilgili ulusal ve uluslararası güncel yayınları takip edebilir ve bunlardan kendi araştırma konusu ile ilgili olanları çalışmalarında kullanabilir X
4 Bilimsel etik değerleri ve kuralları dikkate alır ve mesleki ve toplumsal yaşamda kullanabilir X
5 Kendi çalışmalarının sonuçlarını veya belli bir konudaki güncel çalışmaları ve bulguları, çeşitli bilimsel toplantılarda topluluk önünde Türkçe ve İngilizce olarak sunabilir ve tartışmalara katılabilir. X
6 Gerek bireysel, gerek bir çalışma grubunun üyesi olarak çalışabilme becerisini geliştirir X
7 Yaratıcı ve eleştirel düşünme, problem çözme, özgün bir çalışma üretme becerisini geliştirir. Bilimsel gelişmeleri takip eder, özümsediği bilgilerin analiz, sentez ve değerlendirmesini yapabilir. X
8 Kazandığı bilgi, beceri ve yetkinlikleri yaşam boyu geliştirmeye açık olur. X
9 Alanında özümsediği bilgiyi ve problem çözme yeteneğini disiplinler arası çalışmalarda uygulayabilir; karşılaşılan problemleri matematiksel modellerle ifade ederek, matematiksel bakış açısı ile farklı çözüm yöntemleri önerir. X
10 Matematik temelli yazılımları, bilişim ve iletişim teknolojilerini bilimsel amaçlı kullanabilir. X

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 2 32
Presentation/Seminar Prepration
Project
Report
Homework Assignments 2 12 24
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 8 16
Prepration of Final Exams/Final Jury 1 10 10
Total Workload 130