ECTS - Mathematical Modeling via Differential and Difference Equations
Mathematical Modeling via Differential and Difference Equations (MDES610) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Mathematical Modeling via Differential and Difference Equations | MDES610 | Area Elective | 3 | 0 | 0 | 3 | 5 |
Pre-requisite Course(s) |
---|
N/A |
Course Language | English |
---|---|
Course Type | Elective Courses |
Course Level | Ph.D. |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture. |
Course Lecturer(s) |
|
Course Objectives | Differential and difference equations constitute main tools that scientists and engineers use to make mathematical models of important practical problems. This course aims to involve engineering students in mathematical modelling by means of differential and difference equations and to develop skill with solution techniques in order to understand complex physical phenomena. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Differential equations and solutions, models of vertical motion, single-species population models, multiple-species population models, mechanical oscillators, modeling electric circuits, diffusion models, modeling by means of difference equations. |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | Some terminology. Examples. Separation of variables. | Read related sections in references |
2 | The Euler method. Linear differential equations with constant coefficients. | Read related sections in references |
3 | Vertical motion without air resistance. Vertical motion with air resistance. | Read related sections in references |
4 | Simple population model. Population with emigration. | Read related sections in references |
5 | Population with competition (the logistic equation). | Read related sections in references |
6 | Predator-prey (fox-rabbit) population model. Epidemics (SIR). Two-species competition. | Read related sections in references |
7 | Spring-mass without damping or forcing. Spring-mass with damping and forcing. | Read related sections in references |
8 | Pendulum without damping. Approximate pendulum without damping. | Read related sections in references |
9 | Series RC charge. Series RLC charge and current (first-order system). | Read related sections in references |
10 | Parallel RLC voltage (second-order scalar equation). | Read related sections in references |
11 | Diffusion without convection or source. Diffusion with convection and source. | Read related sections in references |
12 | Heat flow without heat source. Time-dependent diffusion. | Read related sections in references |
13 | Basics of difference equations | Read related sections in references |
14 | A crystal lattice. | Read related sections in references |
15 | Overall review | - |
16 | Final exam | - |
Sources
Course Book | 1. P. W. Davis, Differential Equations: Modeling with matlab, Prentice Hall, Upper Saddle River, New Jersey, 1999. |
---|---|
2. W. G. Kelley and A. C. Peterson, Difference Equations: An Introduction with Applications, Academic Press, New York, 1991. | |
Other Sources | 3. E. Kreyszig, Advanced Engineering Mathematics, 8th ed., Wiley, New York, 1999. |
4. S. L. Ross, Differential Equations, 3rd ed.,Wiley, New York, 1984. | |
5. S. Elaydi, An Introduction to Difference Equations, Springer-Verlag, New York, 1996. |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | - | - |
Laboratory | - | - |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | 5 | 30 |
Presentation | - | - |
Project | - | - |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 2 | 35 |
Final Exam/Final Jury | 1 | 35 |
Toplam | 8 | 100 |
Percentage of Semester Work | 65 |
---|---|
Percentage of Final Work | 35 |
Total | 100 |
Course Category
Core Courses | X |
---|---|
Major Area Courses | |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Alanında, bağımsız olarak, bir problem kurgulayabilir, çözüm yöntemi geliştirerek problemi çözebilir ve sonuçları değerlendirebilir | X | ||||
2 | Matematiğin temel alanlarında ve kendi uzmanlığı olarak seçtiği alanda gerekli alt yapıyı oluşturur. | X | ||||
3 | Matematik literatürünü ve özel olarak kendi araştırma konusu ile ilgili ulusal ve uluslararası güncel yayınları takip edebilir ve bunlardan kendi araştırma konusu ile ilgili olanları çalışmalarında kullanabilir | X | ||||
4 | Bilimsel etik değerleri ve kuralları dikkate alır ve mesleki ve toplumsal yaşamda kullanabilir | X | ||||
5 | Kendi çalışmalarının sonuçlarını veya belli bir konudaki güncel çalışmaları ve bulguları, çeşitli bilimsel toplantılarda topluluk önünde Türkçe ve İngilizce olarak sunabilir ve tartışmalara katılabilir. | X | ||||
6 | Gerek bireysel, gerek bir çalışma grubunun üyesi olarak çalışabilme becerisini geliştirir | X | ||||
7 | Yaratıcı ve eleştirel düşünme, problem çözme, özgün bir çalışma üretme becerisini geliştirir. Bilimsel gelişmeleri takip eder, özümsediği bilgilerin analiz, sentez ve değerlendirmesini yapabilir. | X | ||||
8 | Kazandığı bilgi, beceri ve yetkinlikleri yaşam boyu geliştirmeye açık olur. | X | ||||
9 | Alanında özümsediği bilgiyi ve problem çözme yeteneğini disiplinler arası çalışmalarda uygulayabilir; karşılaşılan problemleri matematiksel modellerle ifade ederek, matematiksel bakış açısı ile farklı çözüm yöntemleri önerir. | X | ||||
10 | Matematik temelli yazılımları, bilişim ve iletişim teknolojilerini bilimsel amaçlı kullanabilir. | X |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 16 | 3 | 48 |
Laboratory | |||
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 16 | 2 | 32 |
Presentation/Seminar Prepration | |||
Project | |||
Report | |||
Homework Assignments | 5 | 6 | 30 |
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 2 | 8 | 16 |
Prepration of Final Exams/Final Jury | 1 | 10 | 10 |
Total Workload | 136 |