Boundary Element Method (MFGE508) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Boundary Element Method MFGE508 Area Elective 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type Elective Courses
Course Level Ph.D.
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Drill and Practice, Problem Solving.
Course Coordinator
Course Lecturer(s)
  • Asst. Prof. Dr. Besim Baranoğlu
Course Assistants
Course Objectives The objective of this course is to introduce the general concepts in Boundary Element Method for the solution of engineering problems. The method will be applied to Laplace equation and elastostatics, but the course will give the tools for expanding the procedure. The course will also cover the parallel solution strategy.
Course Learning Outcomes The students who succeeded in this course;
  • Students will have knowledge on boundary element method and its procedures.
  • Students will be able to formulate engineering problems with boundary element method.
  • Students will improve their knowledge on numerical methods.
  • Students will learn the basics of boundary element method programming.
Course Content Introduction, preliminary concepts, vector and tensor algebra, indicial notation, divergence theorem, Dirac delta function; singular integrals, Cauchy principal value integrals in 1 and 2D, boundary element formulation for Laplace equation, Laplace equation; discretization, boundary element formulation for elastostatics, elastostatics, discretizati

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction; Preliminary Concepts: vector and tensor algebra, indicial notation.
2 Vector algebra, Divergence theorem, dirac delta function.
3 Singular integrals; Cauchy principal value integrals in 1D and 2D.
4 Boundary Element Formulation for Laplace equation.
5 Boundary Element Formulation for Laplace equation.
6 Laplace equation: Discretization (constant and linear elements).
7 Laplace equation: Discretization (quadratic elements).
8 Boundary Element Formulation for Elastostatics.
9 Boundary Element Formulation for Elastostatics.
10 Elastostatics: Discretization (constant and linear elements).
11 Elastostatics: Discretization (quadratic elements).
12 Fundamental solutions.
13 Numerical methods for singular integrals, Analytical solutions.
14 Parallel solution strategy.
15 Final Examination Period
16 Final Examination Period

Sources

Course Book 1. Paris, F., Canas, J., Boundary Element Method: Fundamentals and Applications, Oxford University Press, 1997.
Other Sources 2. Banerjee, P. K., Butterfield, R., Boundary Element Methods in Engineering Science, McGraw-Hill, 1981.
3. Brebbia, C. A., Telles, J. C. F., Wrobel, L. C., Boundary Element Techniques, Springer-Verlag, 1984.
4. Cartwright, D. J., Underlying Principles of the Boundary Element Method, WIT Press, 2001.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 6 30
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 30
Final Exam/Final Jury 1 40
Toplam 8 100
Percentage of Semester Work 60
Percentage of Final Work 40
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Alanında, bağımsız olarak, bir problem kurgulayabilir, çözüm yöntemi geliştirerek problemi çözebilir ve sonuçları değerlendirebilir X
2 Matematiğin temel alanlarında ve kendi uzmanlığı olarak seçtiği alanda gerekli alt yapıyı oluşturur. X
3 Matematik literatürünü ve özel olarak kendi araştırma konusu ile ilgili ulusal ve uluslararası güncel yayınları takip edebilir ve bunlardan kendi araştırma konusu ile ilgili olanları çalışmalarında kullanabilir X
4 Bilimsel etik değerleri ve kuralları dikkate alır ve mesleki ve toplumsal yaşamda kullanabilir X
5 Kendi çalışmalarının sonuçlarını veya belli bir konudaki güncel çalışmaları ve bulguları, çeşitli bilimsel toplantılarda topluluk önünde Türkçe ve İngilizce olarak sunabilir ve tartışmalara katılabilir. X
6 Gerek bireysel, gerek bir çalışma grubunun üyesi olarak çalışabilme becerisini geliştirir X
7 Yaratıcı ve eleştirel düşünme, problem çözme, özgün bir çalışma üretme becerisini geliştirir. Bilimsel gelişmeleri takip eder, özümsediği bilgilerin analiz, sentez ve değerlendirmesini yapabilir. X
8 Kazandığı bilgi, beceri ve yetkinlikleri yaşam boyu geliştirmeye açık olur. X
9 Alanında özümsediği bilgiyi ve problem çözme yeteneğini disiplinler arası çalışmalarda uygulayabilir; karşılaşılan problemleri matematiksel modellerle ifade ederek, matematiksel bakış açısı ile farklı çözüm yöntemleri önerir. X
10 Matematik temelli yazılımları, bilişim ve iletişim teknolojilerini bilimsel amaçlı kullanabilir. X

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours)
Laboratory
Application 16 2 32
Special Course Internship
Field Work
Study Hours Out of Class 16 6 96
Presentation/Seminar Prepration
Project
Report
Homework Assignments 6 6 36
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury
Prepration of Final Exams/Final Jury 1 15 15
Total Workload 179