ECTS - Complex Analysis
Complex Analysis (MATH552) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Complex Analysis | MATH552 | Area Elective | 3 | 0 | 0 | 3 | 5 |
Pre-requisite Course(s) |
---|
N/A |
Course Language | English |
---|---|
Course Type | Elective Courses |
Course Level | Ph.D. |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture, Question and Answer, Team/Group. |
Course Lecturer(s) |
|
Course Objectives | This course is designed to provide necessary backgrounds and further knowledge in Complex Analysis for graduate students of Mathematics. The topics covered by this course have numerous applications in pure and applied mathematics. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Analytic functions as mappings, conformal mappings, complex integration, harmonic functions, series and product developments, entire functions, analytic continuation, algebraic functions. |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | The algebra of complex numbers. Introduction to the concept of analytic function. Elementary theory of power series. | pp. 1-42 |
2 | Elementary point set topology: sets and elements, metric spaces, connectedness, compactness, continuous functions, topological spaces. | pp. 50-67 |
3 | Conformality. Elementary conformal mappings. Elementary Riemann surfaces. | pp. 68-97 |
4 | Fundamental theorems of complex integration. Cauchy’s integral formula. | pp. 101-120 |
5 | Local properties of analytic functions: removable singularities, Taylor’s formula, zeros and poles, the local mapping, the maximum principle. | pp. 124-133 |
6 | Mid-Term Examination | |
7 | The general form of Cauchy’s theorem. Multiply connected regions | pp. 137-144 |
8 | The calculus of residues: the residue theorem, the argument principle, evaluation of definite integrals. | pp. 147-153 |
9 | Harmonic functions. | pp. 160-170 |
10 | Power series expansions. The Laurent series. Partial fractions and factorization. | pp. 173-199 |
11 | Entire functions. | pp. 205-206 |
12 | Normal families of analytic functions. | pp. 210-217 |
13 | Analytic continuation. | pp. 275-287 |
14 | Algebraic functions. | pp. 291-294 |
15 | Picard’s theorem. | pp. 297 |
16 | Final Examination |
Sources
Course Book | 1. L. V. Ahlfors, Complex Analysis, 2nd ed., McGraw-Hill, New York 1966. |
---|---|
Other Sources | 2. A. I. Markuschevich, Theory of Functions of a Complex Variable, 1985. |
3. A J. W. Brown and R. V. Churcill, Complex Variables and Applications, McGraw-Hill, New York, 2003. |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | - | - |
Laboratory | - | - |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | 5 | 15 |
Presentation | - | - |
Project | - | - |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 2 | 50 |
Final Exam/Final Jury | 1 | 35 |
Toplam | 8 | 100 |
Percentage of Semester Work | 65 |
---|---|
Percentage of Final Work | 35 |
Total | 100 |
Course Category
Core Courses | X |
---|---|
Major Area Courses | |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Alanında, bağımsız olarak, bir problem kurgulayabilir, çözüm yöntemi geliştirerek problemi çözebilir ve sonuçları değerlendirebilir | X | ||||
2 | Matematiğin temel alanlarında ve kendi uzmanlığı olarak seçtiği alanda gerekli alt yapıyı oluşturur. | X | ||||
3 | Matematik literatürünü ve özel olarak kendi araştırma konusu ile ilgili ulusal ve uluslararası güncel yayınları takip edebilir ve bunlardan kendi araştırma konusu ile ilgili olanları çalışmalarında kullanabilir | X | ||||
4 | Bilimsel etik değerleri ve kuralları dikkate alır ve mesleki ve toplumsal yaşamda kullanabilir | X | ||||
5 | Kendi çalışmalarının sonuçlarını veya belli bir konudaki güncel çalışmaları ve bulguları, çeşitli bilimsel toplantılarda topluluk önünde Türkçe ve İngilizce olarak sunabilir ve tartışmalara katılabilir. | X | ||||
6 | Gerek bireysel, gerek bir çalışma grubunun üyesi olarak çalışabilme becerisini geliştirir | X | ||||
7 | Yaratıcı ve eleştirel düşünme, problem çözme, özgün bir çalışma üretme becerisini geliştirir. Bilimsel gelişmeleri takip eder, özümsediği bilgilerin analiz, sentez ve değerlendirmesini yapabilir. | X | ||||
8 | Kazandığı bilgi, beceri ve yetkinlikleri yaşam boyu geliştirmeye açık olur. | X | ||||
9 | Alanında özümsediği bilgiyi ve problem çözme yeteneğini disiplinler arası çalışmalarda uygulayabilir; karşılaşılan problemleri matematiksel modellerle ifade ederek, matematiksel bakış açısı ile farklı çözüm yöntemleri önerir. | X | ||||
10 | Matematik temelli yazılımları, bilişim ve iletişim teknolojilerini bilimsel amaçlı kullanabilir. | X |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | |||
Laboratory | |||
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 14 | 3 | 42 |
Presentation/Seminar Prepration | |||
Project | |||
Report | |||
Homework Assignments | 5 | 2 | 10 |
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 2 | 7 | 14 |
Prepration of Final Exams/Final Jury | 1 | 11 | 11 |
Total Workload | 77 |