Galois Theory (MATH546) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Galois Theory MATH546 Area Elective 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type Elective Courses
Course Level Ph.D.
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Question and Answer.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives This course aims to give the fundamentals of field extensions and Galois theory and some applications of Galois theory.
Course Learning Outcomes The students who succeeded in this course;
  • Understand normal and seperable extensions
  • Understand and apply the fundamental theorem of Galois Theory
  • Understand and use norm, trace mappings
  • Understand cyclic extensions
  • Understand and use discriminants
Course Content Characteristic of a field, the Frobenius morphism, field extensions, algebraic extensions, primitive elements, Galois extensions, automorphisms, normal extensions, separable and inseparable extensions, the fundamental theorem of Galois theory, finite fields, cyclotomic extensions, norms and traces, cyclic extensions, discriminants, polynomials of d

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Field Extensions Read related sections in references
2 Automorphisms Read related sections in references
3 Normal Extensions Read related sections in references
4 Separable and Inseparable Extensions Read related sections in references
5 Review
6 Midterm Exam 1
7 The Fundamental Theorem of Galois Theory Read related sections in references
8 Finite Fields Read related sections in references
9 Cyclotomic Extensions Read related sections in references
10 Norms and Traces Read related sections in references
11 Review
12 Midterm Exam 2
13 Cyclic Extensions Read related sections in references
14 Discriminants Read related sections in references
15 Review
16 Final Exam

Sources

Course Book 1. P. Morandi, Field and Galois Theory, Springer-Verlag, New York, 1996
Other Sources 2. J. S. Milne, Fields and Galois Theory, Lecture Notes, 1998, avaliable at: http://www.jmilne.org/math/CourseNotes/FT.pdf
3. J-P. Escofier, Galois Theory, Springer-Verlag, New York, 2001
4. E. Artin, Galois Theory, Dover Publications, 1998

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 4 10
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 50
Final Exam/Final Jury 1 40
Toplam 7 100
Percentage of Semester Work 60
Percentage of Final Work 40
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Is independently able to build a problem in the area of study, solve the problem by developing solution techniques and assess the solutions. X
2 Is capable of creating a groundwork in the fundamental branches of mathematics as well as in his/her research area X
3 follows the latest national and international literature in Mathematics and in his/her area of research; and uses them in his/her related studies X
4 observes and adopts the scientific ethical values in his/her professional and social life X
5 presents in Turkish and English in academic/scientific events the results of his/her research or the latest studies and findings on a special topic and participates in discussions X
6 Develops skills to work independently or as a member of a team X
7 Develops competences in the areas of creative and critical thinking, problem solving and producing original studies. Follows recent scientific studies, is capable of making an analysis, synthesis and assessment of the knowledge acquired X
8 Is open to lifelong improvement of his/her acquired knowledge, skills and competences. X
9 Is able to apply the acquired knowledge and problem-solving skills to interdisciplinary studies, proposes different solution methods to problems in terms of mathematical models and from a mathematical point of view X
10 Uses the mathematical based softwares, informatics and communication technologies for scientific purposes X

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours)
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 14 3 42
Presentation/Seminar Prepration
Project
Report
Homework Assignments 4 3 12
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 7 14
Prepration of Final Exams/Final Jury 1 9 9
Total Workload 77