Calculus on Manifolds (MATH575) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Calculus on Manifolds MATH575 Area Elective 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type Elective Courses
Course Level Ph.D.
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Discussion, Question and Answer.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives The aim of this course is to extend the notions of differentiation and integration, which are taught in the undergraduate program, to manifolds, and to explore the relation of these notions with geometry.
Course Learning Outcomes The students who succeeded in this course;
  • At the end of the course students are expected to
  • Understand the fundamental notions of derivative, integration and tangent vectors on a Euclidean space
  • Learn manifolds, tangent space, submanifolds, vector fields and differential forms
  • Learn the notions of orientation and integration of manifolds (with or without boundary) and Stokes’ theorem and some of its applications.
Course Content Euclidean spaces, manifolds, the tangent spaces, vector fields, differential forms, integration on manifolds, Stokes? theorem.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Smooth functions on a Euclidean space, Tangent vectors in R^n pp. 3-5, pp. 10-16
2 Exterior algebra of Multicovectors pp. 18-31
3 Differential forms on R^n pp. 34-44
4 Manifolds pp. 48-53
5 Smooth maps on a manifold pp. 59-68
6 Tangent space pp. 86-96
7 Submanifolds pp. 100-106
8 Midterm
9 The rank of a smooth map pp. 115-125
10 The tangent bundles, vector fields pp. 129-137, pp. 149-159
11 Vector fields (cont. ), Differential 1-forms pp. 190-197
12 Differential k-forms, The exterior derivative pp. 200-206, pp. 210-216
13 Orientations pp. 236-245
14 Manifolds with boundary pp. 248-255
15 Integration on a manifold, Stokes’ theorem pp. 260-271
16 Final Exam

Sources

Course Book 1. L. W. Tu, An Introduction to Manifolds, 2nd edition, Springer, 2011.
Other Sources 2. M. Spivak, Calculus on Manifolds, 24th edition, Addison-Wesley Publishing Company, 1995 .
3. J. M. Lee, Introduction to Smooth Manifolds, 2nd edition, Springer, 2013
4. N. Hitchin, Differentiable Manifolds, Lecture Notes

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 3 30
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 30
Final Exam/Final Jury 1 40
Toplam 5 100
Percentage of Semester Work 60
Percentage of Final Work 40
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Is independently able to build a problem in the area of study, solve the problem by developing solution techniques and assess the solutions. X
2 Is capable of creating a groundwork in the fundamental branches of mathematics as well as in his/her research area X
3 follows the latest national and international literature in Mathematics and in his/her area of research; and uses them in his/her related studies X
4 observes and adopts the scientific ethical values in his/her professional and social life X
5 presents in Turkish and English in academic/scientific events the results of his/her research or the latest studies and findings on a special topic and participates in discussions X
6 Develops skills to work independently or as a member of a team X
7 Develops competences in the areas of creative and critical thinking, problem solving and producing original studies. Follows recent scientific studies, is capable of making an analysis, synthesis and assessment of the knowledge acquired X
8 Is open to lifelong improvement of his/her acquired knowledge, skills and competences. X
9 Is able to apply the acquired knowledge and problem-solving skills to interdisciplinary studies, proposes different solution methods to problems in terms of mathematical models and from a mathematical point of view X
10 Uses the mathematical based softwares, informatics and communication technologies for scientific purposes X

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours)
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class
Presentation/Seminar Prepration
Project
Report
Homework Assignments 3 5 15
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 10 10
Prepration of Final Exams/Final Jury 1 10 10
Total Workload 35