ECTS - Heat Exchanger Design
Heat Exchanger Design (ME453) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Heat Exchanger Design | ME453 | Area Elective | 3 | 0 | 0 | 3 | 5 |
Pre-requisite Course(s) |
---|
N/A |
Course Language | English |
---|---|
Course Type | Elective Courses |
Course Level | Bachelor’s Degree (First Cycle) |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture. |
Course Lecturer(s) |
|
Course Objectives | Provide students with the knowledge and skills necessary to design and analyze different types of heat exchangers. To teach and apply the calculation steps in the design of heat exchangers in detail. Develop a thermodynamic model of heat exchangers and formulation and application of energy and exergy analysis methods. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Classification of heat exchangers, basic design methods of heat exchangers (LMTD and epsilon-NTU), forced convection correlations for single-phase heat exchangers, heat exchanger pressure drop and pumping power, fouling of heat exchangers, calculation steps of designing heat exchangers, thermodynamic modeling and analysis of heat exchangers, design and simulation of heat exchangers, students will be asked to complete a design project of heat exchanger. |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | Introduction and Classification of Heat Exchangers Basic Thermal Design Theory of Heat Exchangers Basic Thermal Design Theory of Heat Exchangers Forced Convection Correlations for Single-phase Side of Heat Exchangers Forced Convection Correlations for Single-phase Side of Heat Exchangers Heat Exchangers Pressure Drop and Pumping Power Fouling of Heat Exchangers and Examples Problem Solutions - Exercises Midterm exam Calculation Steps for Designing Heat Exchangers Thermodynamic Modeling and Analysis (Energy and Exergy Analysis of Heat Exchangers) Thermodynamic Modeling and Analysis (Energy and Exergy Analysis of Heat Exchangers) Design and Simulation of Heat Exchangers Design Project of Heat Exchangers Design Project of Heat Exchangers Final Exam |
Sources
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | - | - |
Laboratory | - | - |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | 2 | 10 |
Presentation | - | - |
Project | 1 | 15 |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 1 | 30 |
Final Exam/Final Jury | 1 | 45 |
Toplam | 5 | 100 |
Percentage of Semester Work | |
---|---|
Percentage of Final Work | 100 |
Total | 100 |
Course Category
Core Courses | X |
---|---|
Major Area Courses | |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Adequate knowledge in mathematics, science and subjects specific to the aerospace engineering discipline; the ability to apply theoretical and practical knowledge of these areas to complex engineering problems. | |||||
2 | The ability to identify, define, formulate and solve complex engineering problems; selecting and applying proper analysis and modeling techniques for this purpose. | |||||
3 | The ability to design a complex system, process, device or product under realistic constraints and conditions to meet specific requirements; the ability to apply modern design methods for this purpose. | |||||
4 | The ability to develop, select and utilize modern techniques and tools essential for the analysis and determination of complex problems in aerospace engineering applications; the ability to utilize information technologies effectively. | |||||
5 | The ability to design experiments and their setups, to make experiments, gather data, analyze and interpret results for the investigation of complex engineering problems or research topics specific to the aerospace engineering discipline. | |||||
6 | The ability to work effectively in inter/inner disciplinary teams; ability to work individually. | |||||
7 | Effective oral and written communication skills in Turkish; the knowledge of at least one foreign language; the ability to write effective reports and comprehend written reports, to prepare design and production reports, to make effective presentations, to give and receive clear and understandable instructions. | |||||
8 | Recognition of the need for lifelong learning; the ability to access information and follow recent developments in science and technology with continuous self-development | |||||
9 | The ability to behave according to ethical principles, awareness of professional and ethical responsibility; knowledge of the standards utilized in aerospace engineering applications. | |||||
10 | Knowledge on business practices such as project management, risk management and change management; awareness about entrepreneurship, innovation; knowledge on sustainable development. | |||||
11 | Knowledge on the effects of aerospace engineering applications on the universal and social dimensions of health, environment and safety; awareness of the legal consequences of engineering solutions. | |||||
12 | Knowledge on aerodynamics, materials used in aerospace engineering, structures, propulsion, flight mechanics, stability and control, and an ability to apply these on aerospace engineering problems. | |||||
13 | Knowledge on orbit mechanics, position determination, telecommunication, space structures and rocket propulsion. |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 16 | 3 | 48 |
Laboratory | |||
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 16 | 3 | 48 |
Presentation/Seminar Prepration | |||
Project | 1 | 8 | 8 |
Report | |||
Homework Assignments | 2 | 3 | 6 |
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 1 | 8 | 8 |
Prepration of Final Exams/Final Jury | 1 | 12 | 12 |
Total Workload | 130 |