ECTS - Production Design and Prototyping

Production Design and Prototyping (ME488) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Production Design and Prototyping ME488 Area Elective 1 4 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Drill and Practice, Observation Case Study.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives The aim of this course is to introduce students basic mechanical subjects, material science, basic manufacturing methods and design principles of engineering and in addition basic design factors (line, figure, color, material, texture, design field, form, value in lighting), ergonomics / anthropometry and meaning in design and by having an interdisciplinary project, to combine the knowledge and practice.
Course Learning Outcomes The students who succeeded in this course;
  • Students will have the ability to understand and explain the basic mechanical design problems through applications with the knowledge about basic materials science and production methods. Students will be able to identify basic product design factors with respect to producibility and interpret the final product in the manner of meaning considering ergonomics and anthropometry. Students will be able to propose solutions to a design problem with the information gained from research; improve and present them by sketch drawings and prototyping. Students will be able to work in an interdisciplinary team.
Course Content Introduction to basic mechanical concepts,mechanical behavior of basic structural elements;introduction to basic materials science and basic manufacturing methods,introduction to mechanical and physical properties of materials;introduction to basic manufacturing processes and casting and material forming; basic design factors(line,figure,color,material,texture,design field,form,value in lighting), ergonomics/anthropometry;meaning in design;design project development by drawing and prototyping.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Force: Tensile, Compression and Shear forces. Moment. Weight. Equilibrium system in the plane., Mechanical behavior of basic structural elements Mechanical and physical properties of materials. Material Characterization Basic manufacturing methods. Casting and Material Forming Basic design factors in product design: Line, figure, color, material, texture, design field, form, value in lighting. Ergonomics and anthropometry Meaning in design. Representation of project topics and determination of project groups. Initial ideas of the project presentation: Preliminary research file (problem description, solution proposals, sketch drawings). Improvement of preliminary research file; solution proposals, sketch drawings. Improvement of proposed solutions to the design problem and sketch drawings. Representation of the requirement list for the pre-jury evaluation. Pre-jury evaluation. Improvement of the project. Information about the mood board design. Transition to prototyping process and presentations of mood boards. Prototyping. Prototyping. Prototyping. Prototyping.

Sources

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation 15 10
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 1 10
Presentation 8 20
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 20
Final Exam/Final Jury 1 40
Toplam 26 100
Percentage of Semester Work
Percentage of Final Work 100
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Adequate knowledge in mathematics, science and subjects specific to the aerospace engineering discipline; the ability to apply theoretical and practical knowledge of these areas to complex engineering problems.
2 The ability to identify, define, formulate and solve complex engineering problems; selecting and applying proper analysis and modeling techniques for this purpose.
3 The ability to design a complex system, process, device or product under realistic constraints and conditions to meet specific requirements; the ability to apply modern design methods for this purpose.
4 The ability to develop, select and utilize modern techniques and tools essential for the analysis and determination of complex problems in aerospace engineering applications; the ability to utilize information technologies effectively.
5 The ability to design experiments and their setups, to make experiments, gather data, analyze and interpret results for the investigation of complex engineering problems or research topics specific to the aerospace engineering discipline.
6 The ability to work effectively in inter/inner disciplinary teams; ability to work individually.
7 Effective oral and written communication skills in Turkish; the knowledge of at least one foreign language; the ability to write effective reports and comprehend written reports, to prepare design and production reports, to make effective presentations, to give and receive clear and understandable instructions.
8 Recognition of the need for lifelong learning; the ability to access information and follow recent developments in science and technology with continuous self-development
9 The ability to behave according to ethical principles, awareness of professional and ethical responsibility; knowledge of the standards utilized in aerospace engineering applications.
10 Knowledge on business practices such as project management, risk management and change management; awareness about entrepreneurship, innovation; knowledge on sustainable development.
11 Knowledge on the effects of aerospace engineering applications on the universal and social dimensions of health, environment and safety; awareness of the legal consequences of engineering solutions.
12 Knowledge on aerodynamics, materials used in aerospace engineering, structures, propulsion, flight mechanics, stability and control, and an ability to apply these on aerospace engineering problems.
13 Knowledge on orbit mechanics, position determination, telecommunication, space structures and rocket propulsion.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 2 32
Presentation/Seminar Prepration 8 2 16
Project
Report
Homework Assignments 1 4 4
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 10 10
Prepration of Final Exams/Final Jury 1 15 15
Total Workload 125