ECTS - Architectural Photography
Architectural Photography (ART293) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Architectural Photography | ART293 | Fall and Spring | 3 | 0 | 0 | 3 | 4 |
Pre-requisite Course(s) |
---|
N/A |
Course Language | Turkish |
---|---|
Course Type | Elective Courses |
Course Level | Bachelor’s Degree (First Cycle) |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture, Demonstration, Drill and Practice. |
Course Lecturer(s) |
|
Course Objectives | • Learning and using technical and compositional information about architectural photography • Taking better architectural photographs on her/his professional and also social life |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Architectural dynamics in art of photography; photography techniques that are compatible with structures; equipment knowledge and usage techniques. |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | Introduction, essential information about the course context, course outline, references, and assesment methods | |
2 | Definition of photography, photographer, architectural photography, and architectural photographer. Architectural photography and different types of photography. | |
3 | Ethics and copyright in photography and architectural photography. History of architectural photography. | |
4 | The purpose of architectural photography. Shooting methods in architectural photography. Ex-ante controls. | |
5 | Cameras in architectural photography. | |
6 | Lenses and the importance of focal length of lenses in architectural photography. | |
7 | Midterm Exam | |
8 | Perspective Control. Auxiliary equipments in architectural photography. | |
9 | Proper lighting (natural and artificial) in architectural photography. | |
10 | Composition rules in architectural photography | |
11 | Depth of field in architectural photography. Shooting interior and exterior spaces. | |
12 | Overcoming challenges in architectural photography. | |
13 | Creative photography techniques in architectural photography. | |
14 | Panoramic architectural photography. Photographing an architecture model. Editing techniques in architectural photography. | |
15 | Reviewing the term. | |
16 | Final Exam |
Sources
Other Sources | 1. Kanburoğlu. Ö. (2016).Tüm Yönleriyle Mimari Fotoğraf. İstanbul: Say Yayınları. |
---|
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | - | - |
Laboratory | - | - |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | 3 | 15 |
Presentation | 1 | 10 |
Project | - | - |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 1 | 25 |
Final Exam/Final Jury | 1 | 50 |
Toplam | 6 | 100 |
Percentage of Semester Work | 50 |
---|---|
Percentage of Final Work | 50 |
Total | 100 |
Course Category
Core Courses | X |
---|---|
Major Area Courses | |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Adequate knowledge in mathematics, science and subjects specific to the aerospace engineering discipline; the ability to apply theoretical and practical knowledge of these areas to complex engineering problems. | |||||
2 | The ability to identify, define, formulate and solve complex engineering problems; selecting and applying proper analysis and modeling techniques for this purpose. | |||||
3 | The ability to design a complex system, process, device or product under realistic constraints and conditions to meet specific requirements; the ability to apply modern design methods for this purpose. | |||||
4 | The ability to develop, select and utilize modern techniques and tools essential for the analysis and determination of complex problems in aerospace engineering applications; the ability to utilize information technologies effectively. | |||||
5 | The ability to design experiments and their setups, to make experiments, gather data, analyze and interpret results for the investigation of complex engineering problems or research topics specific to the aerospace engineering discipline. | |||||
6 | The ability to work effectively in inter/inner disciplinary teams; ability to work individually. | |||||
7 | Effective oral and written communication skills in Turkish; the knowledge of at least one foreign language; the ability to write effective reports and comprehend written reports, to prepare design and production reports, to make effective presentations, to give and receive clear and understandable instructions. | |||||
8 | Recognition of the need for lifelong learning; the ability to access information and follow recent developments in science and technology with continuous self-development | X | ||||
9 | The ability to behave according to ethical principles, awareness of professional and ethical responsibility; knowledge of the standards utilized in aerospace engineering applications. | |||||
10 | Knowledge on business practices such as project management, risk management and change management; awareness about entrepreneurship, innovation; knowledge on sustainable development. | |||||
11 | Knowledge on the effects of aerospace engineering applications on the universal and social dimensions of health, environment and safety; awareness of the legal consequences of engineering solutions. | |||||
12 | Knowledge on aerodynamics, materials used in aerospace engineering, structures, propulsion, flight mechanics, stability and control, and an ability to apply these on aerospace engineering problems. | |||||
13 | Knowledge on orbit mechanics, position determination, telecommunication, space structures and rocket propulsion. |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 16 | 3 | 48 |
Laboratory | |||
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 6 | 2 | 12 |
Presentation/Seminar Prepration | 1 | 7 | 7 |
Project | |||
Report | |||
Homework Assignments | 3 | 5 | 15 |
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 1 | 8 | 8 |
Prepration of Final Exams/Final Jury | 1 | 10 | 10 |
Total Workload | 100 |