ECTS - Introduction to Electrical Engineering
Introduction to Electrical Engineering (EE234) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Introduction to Electrical Engineering | EE234 | 4. Semester | 3 | 1 | 0 | 3 | 5 |
Pre-requisite Course(s) |
---|
PHYS102 |
Course Language | English |
---|---|
Course Type | Compulsory Departmental Courses |
Course Level | Bachelor’s Degree (First Cycle) |
Mode of Delivery | |
Learning and Teaching Strategies | . |
Course Lecturer(s) |
|
Course Objectives | |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Definition of current, voltage, resistance, power, Kirchoff laws and resistive DC circuits, Thevenin and Norton equivalents, AC circuits, phasors, filters, reactive power, three-phase circuits and power, overview of combinational and sequential digital circuits and examples, diodes and transistors. |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | Basic concepts in electrical engineering | |
2 | Voltage-Current Relationships, Ohm’s Law, Power | Review last weeks topics |
3 | Fundamental network theorems and resistive circuits, Kirchhoff laws, Sign Conventions | Review last weeks topics |
4 | Parallel and Series Circuits and their resistive versions | Review last weeks topics |
5 | Nodal Analysis | Review last weeks topics |
6 | Mesh Analysis | Review last weeks topics |
7 | Midterm Exam | Review all topics up-to this week |
8 | Circuits with dependent sources | Review last weeks topics |
9 | Thevenin-Norton theorems | Review last weeks topics |
10 | Alternating Current Concepts, Charge and Magnetism | Review last weeks topics |
11 | Inductors and Capacitors | Review last weeks topics |
12 | Initial condition response of AC circuits | Review last weeks topics |
13 | Sinusoidal steady state analysis and impedance | Review last weeks topics |
14 | Application of fundamental concepts in circuit analysis to AC network solutions | Review last weeks topics |
15 | Power in AC circuits | Review last weeks topics |
16 | Midterm exam | Review all topics up-to this week |
Sources
Course Book | 1. Irwin and Nelms, Engineering Circuit Analysis, 11th Ed., Wiley |
---|
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | - | - |
Laboratory | 5 | 3 |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | - | - |
Presentation | - | - |
Project | - | - |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 2 | 50 |
Final Exam/Final Jury | 1 | 35 |
Toplam | 8 | 88 |
Percentage of Semester Work | |
---|---|
Percentage of Final Work | 100 |
Total | 100 |
Course Category
Core Courses | X |
---|---|
Major Area Courses | |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Adequate knowledge in mathematics, science and subjects specific to the aerospace engineering discipline; the ability to apply theoretical and practical knowledge of these areas to complex engineering problems. | X | ||||
2 | The ability to identify, define, formulate and solve complex engineering problems; selecting and applying proper analysis and modeling techniques for this purpose. | X | ||||
3 | The ability to design a complex system, process, device or product under realistic constraints and conditions to meet specific requirements; the ability to apply modern design methods for this purpose. | |||||
4 | The ability to develop, select and utilize modern techniques and tools essential for the analysis and determination of complex problems in aerospace engineering applications; the ability to utilize information technologies effectively. | |||||
5 | The ability to design experiments and their setups, to make experiments, gather data, analyze and interpret results for the investigation of complex engineering problems or research topics specific to the aerospace engineering discipline. | |||||
6 | The ability to work effectively in inter/inner disciplinary teams; ability to work individually. | |||||
7 | Effective oral and written communication skills in Turkish; the knowledge of at least one foreign language; the ability to write effective reports and comprehend written reports, to prepare design and production reports, to make effective presentations, to give and receive clear and understandable instructions. | |||||
8 | Recognition of the need for lifelong learning; the ability to access information and follow recent developments in science and technology with continuous self-development | |||||
9 | The ability to behave according to ethical principles, awareness of professional and ethical responsibility; knowledge of the standards utilized in aerospace engineering applications. | |||||
10 | Knowledge on business practices such as project management, risk management and change management; awareness about entrepreneurship, innovation; knowledge on sustainable development. | |||||
11 | Knowledge on the effects of aerospace engineering applications on the universal and social dimensions of health, environment and safety; awareness of the legal consequences of engineering solutions. | |||||
12 | Knowledge on aerodynamics, materials used in aerospace engineering, structures, propulsion, flight mechanics, stability and control, and an ability to apply these on aerospace engineering problems. | |||||
13 | Knowledge on orbit mechanics, position determination, telecommunication, space structures and rocket propulsion. |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 16 | 3 | 48 |
Laboratory | 5 | 2 | 10 |
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 14 | 2 | 28 |
Presentation/Seminar Prepration | |||
Project | |||
Report | |||
Homework Assignments | |||
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 2 | 10 | 20 |
Prepration of Final Exams/Final Jury | 1 | 20 | 20 |
Total Workload | 126 |