Solar Energy Technology (ENE308) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Solar Energy Technology ENE308 Area Elective 3 1 0 3 5
Pre-requisite Course(s)
(ENE203 veya EE212)
Course Language English
Course Type Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Demonstration, Discussion, Experiment, Question and Answer, Drill and Practice.
Course Coordinator
Course Lecturer(s)
  • Asst. Prof. Dr. Gizem Nur Bulanık Durmuş
Course Assistants
Course Objectives To give necessary knowledge to the students on solar energy and its applications. The aim of the course is to help the development of the national industry. To help the development of the engineering skills of the students.
Course Learning Outcomes The students who succeeded in this course;
  • To give the theory and practice about Solar Energy to students.
  • Learning the usage of the methods for research, design and development in the analysis of the energy transformation at applications of solar energy.
Course Content Introduction to solar energy conversions, fundamentals of solar radiation, methods of solar collection and thermal conversion, solar heating systems, solar thermal power, capturing solar energy through biomass.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Fundamental Concepts and Solar Radiation Chapter 1
2 Solar Energy and Available Solar Radiation Chapter 2
3 Selected Heat Transfer Topics Chapter 3
4 Solar Angles and Extraterrestial Solar Radiation Chapter 4
5 Calculation of solar radiation on horizontal and tilted surfaces. Chapter 4
6 Atmospheric Solar Radiation Chapter 5
7 Transmission of solar radiation through glass and plastics. Chapter 6
8 Flat-Plate Collectors Chapter 6
9 Concentrating Collectors Chapter 7
10 Midterm Exam
11 Thermal Energy storage and Power generation using thermal energy Chapter 8
12 Solar Energy Applications Chapter 9
13 Solar Energy Applications Chapter 9
14 Solar Cells and direct conversion of solar energy into electrical energy Chapter 10
15 Solar Cells and direct conversion of solar energy into electrical energy, Design of PV systems Chapter 11
16 Final Exam

Sources

Course Book 1. J. Duffie and W. Beckman, Solar Engineering of Thermal Processes, 3rd Edition, John Wiley & Sons, Inc., 2006
Other Sources 2. R.C. Neville, Solar Energy Conversion-The Solar Cell, 2nd Edition, Elsevier, 1995

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation - -
Project - -
Report 1 25
Seminar - -
Midterms Exams/Midterms Jury 1 30
Final Exam/Final Jury 1 45
Toplam 3 100
Percentage of Semester Work 0
Percentage of Final Work 100
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Adequate knowledge in mathematics, science and computing fields; ability to apply theoretical and practical knowledge of these fields in solving engineering problems related to information systems.
2 Ability to identify, define, formulate and solve complex engineering problems; selecting and applying proper analysis and modeling techniques for this purpose.
3 Ability to design a complex system, process, device or product under realistic constraints and conditions to meet specific requirements; ability to apply modern design methods for this purpose.
4 Ability to develop, select and use modern techniques and tools necessary for the analysis and solution of complex problems encountered in information systems engineering applications; ability to use information technologies effectively.
5 Ability to gather data, analyze and interpret results for the investigation of complex engineering problems or research topics specific to the information systems discipline.
6 Ability to work effectively in inter/inner disciplinary teams; ability to work individually. X
7 a. Effective oral and written communication skills in Turkish; ability to write effective reports and comprehend written reports, to prepare design and production reports, to make effective presentations, to give and receive clear and understandable instructions. b. Knowledge of at least one foreign language; ability to write effective reports and comprehend written reports, to prepare design and production reports, to make effective presentations, to give and receive clear and understandable instructions.
8 Recognition of the need for lifelong learning; the ability to access information and follow recent developments in science and technology with continuous self-development.
9 a. Ability to behave according to ethical principles, awareness of professional and ethical responsibility. b. Knowledge of the standards utilized in information systems engineering applications.
10 a. Knowledge on business practices such as project management, risk management and change management. b. Awareness about entrepreneurship, and innovation. c. Knowledge on sustainable development.
11 a. Knowledge of the effects of information systems engineering applications on the universal and social dimensions of health, environment, and safety. b. Awareness of the legal consequences of engineering solutions.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 2 32
Presentation/Seminar Prepration
Project
Report 1 15 15
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 10 20
Prepration of Final Exams/Final Jury 1 15 15
Total Workload 130