ECTS - Soft Computing
Soft Computing (CMPE466) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Soft Computing | CMPE466 | Area Elective | 3 | 0 | 0 | 3 | 5 |
Pre-requisite Course(s) |
---|
N/A |
Course Language | English |
---|---|
Course Type | Elective Courses |
Course Level | Bachelor’s Degree (First Cycle) |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture. |
Course Lecturer(s) |
|
Course Objectives | The objective of this course is to teach basic neural networks, fuzzy systems, and optimization algorithms concepts and their relations. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Biological and artificial neurons, perceptron and multilayer perceptron; ANN models and learning algorithms; fuzzy sets and fuzzy logic; basic fuzzy mathematics; fuzzy operators; fuzzy systems: fuzzifier, knowledge base, inference engine, and various inference mechanisms such as Sugeno, Mamdani, Larsen etc., composition and defuzzifier. |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | Introduction to Neuro – Fuzzy and Soft Computing | Chapter 1 (main text) |
2 | Fuzzy Sets | Chapter 2 |
3 | Fuzzy Rules and Fuzzy Reasoning | Chapter 3 |
4 | Fuzzy Rules and Fuzzy Reasoning | Chapter 3 |
5 | Fuzzy Inference Systems | Chapter 4 |
6 | Derivative – Based Optimization | Chapter 6 |
7 | Derivative – Free Optimization | Chapter 7 |
8 | Derivative – Free Optimization | Chapter 7 |
9 | Supervised Learning Neural Networks | Chapter 9 |
10 | Unsupervised Learning Neural Networks | Chapter 11 |
11 | Adaptive Neuro – Fuzzy Inference Systems | Chapter 12 |
12 | Adaptive Neuro – Fuzzy Inference Systems | Chapter 12 |
13 | Coactive Neuro – Fuzzy Modeling | Chapter 13 |
14 | Applications | Chapter 19 – 22 |
Sources
Course Book | 1. J. S. R. Jang, C. T. Sun and E. Mizutai, “Neuro-Fuzzy and Soft Computing”, 1997. |
---|---|
Other Sources | 2. Timothy J. Ross, “Fuzzy Logic with Engineering Applications”, McGraw-Hill, 1997. |
3. Zioluchian Ali, Jamshidi Mo, “Intelligent Control Systems Using Soft Computing Methodologies”, CRC Press, 2001. | |
4. D. E. Goldberg, “Genetic Algorithms: Search, Optimization and Machine Learning”, Addison Wesley, N.Y., 1989. | |
5. S. Rajasekaran and G.A.V.Pai, “Neural Networks, Fuzzy Logic and Genetic Algorithms”, PHI, 2003. | |
6. L. H. Tsoukalas, R. E. Uhrig, “Fuzzy and Neural Approaches in Engineering”, John Wiley, N. Y., 1997. |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | - | - |
Laboratory | - | - |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | 4 | 20 |
Presentation | - | - |
Project | 1 | 25 |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 1 | 25 |
Final Exam/Final Jury | 1 | 30 |
Toplam | 7 | 100 |
Percentage of Semester Work | 70 |
---|---|
Percentage of Final Work | 30 |
Total | 100 |
Course Category
Core Courses | X |
---|---|
Major Area Courses | |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Adequate knowledge in mathematics, science and computing fields; ability to apply theoretical and practical knowledge of these fields in solving engineering problems related to information systems. | X | ||||
2 | Ability to identify, define, formulate and solve complex engineering problems; selecting and applying proper analysis and modeling techniques for this purpose. | |||||
3 | Ability to design a complex system, process, device or product under realistic constraints and conditions to meet specific requirements; ability to apply modern design methods for this purpose. | |||||
4 | Ability to develop, select and use modern techniques and tools necessary for the analysis and solution of complex problems encountered in information systems engineering applications; ability to use information technologies effectively. | |||||
5 | Ability to gather data, analyze and interpret results for the investigation of complex engineering problems or research topics specific to the information systems discipline. | |||||
6 | Ability to work effectively in inter/inner disciplinary teams; ability to work individually. | |||||
7 | a. Effective oral and written communication skills in Turkish; ability to write effective reports and comprehend written reports, to prepare design and production reports, to make effective presentations, to give and receive clear and understandable instructions. b. Knowledge of at least one foreign language; ability to write effective reports and comprehend written reports, to prepare design and production reports, to make effective presentations, to give and receive clear and understandable instructions. | |||||
8 | Recognition of the need for lifelong learning; the ability to access information and follow recent developments in science and technology with continuous self-development. | |||||
9 | a. Ability to behave according to ethical principles, awareness of professional and ethical responsibility. b. Knowledge of the standards utilized in information systems engineering applications. | |||||
10 | a. Knowledge on business practices such as project management, risk management and change management. b. Awareness about entrepreneurship, and innovation. c. Knowledge on sustainable development. | |||||
11 | a. Knowledge of the effects of information systems engineering applications on the universal and social dimensions of health, environment, and safety. b. Awareness of the legal consequences of engineering solutions. |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 16 | 3 | 48 |
Laboratory | |||
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 16 | 2 | 32 |
Presentation/Seminar Prepration | |||
Project | 1 | 10 | 10 |
Report | |||
Homework Assignments | 4 | 3 | 12 |
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 1 | 10 | 10 |
Prepration of Final Exams/Final Jury | 1 | 15 | 15 |
Total Workload | 127 |