ECTS - Calculus II
Calculus II (MATH152) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Calculus II | MATH152 | 2. Semester | 4 | 2 | 0 | 5 | 7 |
Pre-requisite Course(s) |
---|
MATH151 |
Course Language | English |
---|---|
Course Type | Compulsory Departmental Courses |
Course Level | Bachelor’s Degree (First Cycle) |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture, Question and Answer, Problem Solving. |
Course Lecturer(s) |
|
Course Objectives | The course is designed as a continuation of MATH151 Calculus I and aims to give the students the computational skills in series, analytic geometry and multi-variable differential and integral calculus to handle engineering problems. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Infinite series, vectors in the plane and polar coordinates, vectors and motions in space, multivariable functions and their derivatives, multiple integrals: double integrals, areas, double integrals in polar coordinates, triple integrals in rectangular, cylindrical and spherical coordinates, line integrals, Independence of path,Green's theorem. |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | 9.1. Sequences and Convergence, 9.2. Infinite Series, | pp:495-409 |
2 | 9.3. Convergence Tests for Positive Series (The Integral Test, Comparison Tests, The Ratio and Root Tests), 9.4. Absolute and Conditional Convergence, | pp:510-526 |
3 | 9.5. Power Series, 9.6. Taylor and Maclaurin Series (Convergence of Taylor Series; Error Estimates), | pp:526-545 |
4 | 9.7. Applications of Taylor and Maclaurin Series, 10.1. Analytic Geometry in Three Dimensions, | pp:546-549 pp:562-568 |
5 | 10.2. Vectors, 10.3. The Cross Product in 3-Space, | pp:568-585 |
6 | 10.4. Planes and Lines, 10.5. Quadric Surfaces, | pp:585-596 |
7 | Midterm, | |
8 | 12.1. Functions of Several Variables, 12.2. Limits and Continuity, | pp:669-681 |
9 | 12.3. Partial Derivatives, 12.4. Higher Order Derivatives, 12.5. The Chain Rule, | pp:681-703 |
10 | 12.6. Linear Approximations, Differentiability, and Differentials, 12.7. Gradient and Directional Derivatives, 12.8. Implicit Functions, | pp:703-705 pp:706-707 pp:714-726 |
11 | 13.1. Extreme Values, 13.2. Extreme Values of Functions Defined on Restricted Domains, | pp:743-754 |
12 | 13.3. Lagrange Multipliers, 14.1. Double Integrals, | pp:756-760 pp:790-796 |
13 | 14.2. Iteration of Double Integrals in Cartesian Coordinates, 14.4. Double Integrals in Polar Coordinates, | pp:796-802 pp:808-812 |
14 | 14.5. Triple Integrals, 14.6. Change of Variables in Triple Integrals (Cylindrical and Spherical Coordinates), | pp:818-830 |
15 | 14.6. Change of Variables in Triple Integrals (Cylindrical and Spherical Coordinates), | pp:824-830 |
16 | Final Exam |
Sources
Course Book | 1. Calculus: A complete Course, R. A. Adams, C. Essex, 7th Edition; Pearson Addison Wesley |
---|---|
Other Sources | 2. Thomas’ Calculus Early Transcendentals, 11th Edition.( Revised by M. D. Weir, J.Hass and F. R. Giardano; Pearson , Addison Wesley) |
3. Calculus: A new horizon, Anton Howard, 6th Edition; John Wiley & Sons | |
4. Calculus with Analytic Geometry, C. H. Edwards; Prentice Hall | |
5. Calculus with Analytic Geometry, R. A. Silverman; Prentice Hall |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | - | - |
Laboratory | - | - |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | - | - |
Presentation | - | - |
Project | - | - |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 2 | 60 |
Final Exam/Final Jury | 1 | 40 |
Toplam | 3 | 100 |
Percentage of Semester Work | 60 |
---|---|
Percentage of Final Work | 40 |
Total | 100 |
Course Category
Core Courses | |
---|---|
Major Area Courses | |
Supportive Courses | X |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Adequate knowledge in mathematics, science and computing fields; ability to apply theoretical and practical knowledge of these fields in solving engineering problems related to information systems. | X | ||||
2 | Ability to identify, define, formulate and solve complex engineering problems; selecting and applying proper analysis and modeling techniques for this purpose. | X | ||||
3 | Ability to design a complex system, process, device or product under realistic constraints and conditions to meet specific requirements; ability to apply modern design methods for this purpose. | |||||
4 | Ability to develop, select and use modern techniques and tools necessary for the analysis and solution of complex problems encountered in information systems engineering applications; ability to use information technologies effectively. | |||||
5 | Ability to gather data, analyze and interpret results for the investigation of complex engineering problems or research topics specific to the information systems discipline. | |||||
6 | Ability to work effectively in inter/inner disciplinary teams; ability to work individually. | |||||
7 | a. Effective oral and written communication skills in Turkish; ability to write effective reports and comprehend written reports, to prepare design and production reports, to make effective presentations, to give and receive clear and understandable instructions. b. Knowledge of at least one foreign language; ability to write effective reports and comprehend written reports, to prepare design and production reports, to make effective presentations, to give and receive clear and understandable instructions. | |||||
8 | Recognition of the need for lifelong learning; the ability to access information and follow recent developments in science and technology with continuous self-development. | |||||
9 | a. Ability to behave according to ethical principles, awareness of professional and ethical responsibility. b. Knowledge of the standards utilized in information systems engineering applications. | |||||
10 | a. Knowledge on business practices such as project management, risk management and change management. b. Awareness about entrepreneurship, and innovation. c. Knowledge on sustainable development. | |||||
11 | a. Knowledge of the effects of information systems engineering applications on the universal and social dimensions of health, environment, and safety. b. Awareness of the legal consequences of engineering solutions. |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 16 | 4 | 64 |
Laboratory | |||
Application | 16 | 2 | 32 |
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 14 | 3 | 42 |
Presentation/Seminar Prepration | |||
Project | |||
Report | |||
Homework Assignments | |||
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 2 | 10 | 20 |
Prepration of Final Exams/Final Jury | 1 | 18 | 18 |
Total Workload | 176 |