ECTS - Active and Passive Automobile Safety

Active and Passive Automobile Safety (AE414) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Active and Passive Automobile Safety AE414 Area Elective 3 1 0 3 5
Pre-requisite Course(s)
MECE204
Course Language English
Course Type Elective Courses
Course Level Natural & Applied Sciences Master's Degree
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Discussion, Question and Answer, Problem Solving.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives Introduction. Conservation Laws and Boundary Conditions. The Finite Volume Method for Diffusion Problems. The Finite Volume Method for Convection-Diffusion Problems. Solution Algorithms for Pressure-Velocity Coupling in Steady Flows. Solution of Discretization Equations. The Finite Volume Method for Unsteady Flows. Implementation of Boundary Conditions. Practice with commercial program FLUENT – Case studies concerning aerodynamics of vehicles and hydrodynamic control systems in vehicles.
Course Learning Outcomes The students who succeeded in this course;
  • Define the basic terms of the subject and to express any problem using these terms
  • Identify the crash types correctly
  • Define the brake, traction and stability, passenger restraint systems correctly
  • Solve the intrusion resistance, energy absorbing problems
  • Define the safety issues in hybrid, electric and alternative fuel vehicles
Course Content Introduction to automobile safety subject; crash types; brake systems; traction and stability systems; passenger restraint systems; energy absorbing; intrusion resistance; safety in hybrid, electric and alternative fuel vehicles; autonomous vehicles; developing safety technologies.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction to Automotive Safety None
2 Crash Types Lecture notes on the Moodle site
3 Brake Systems Lecture notes on the Moodle site
4 Traction and Stability Systems Lecture notes on the Moodle site
5 Passenger Restraint Systems Lecture notes on the Moodle site
6 Energy Absorbing Lecture notes on the Moodle site
7 Intrusion Resistance Lecture notes on the Moodle site
8 Midterm I Exam Lecture notes on the Moodle site
9 Safety In Hybrid, Electric And Alternative Fuel Vehicles Lecture notes on the Moodle site
10 Autonomous Vehicles Lecture notes on the Moodle site
11 Autonomous Vehicles Lecture notes on the Moodle site
12 Crash test standards Lecture notes on the Moodle site
13 Developing Safety Technologies Lecture notes on the Moodle site
14 Review Lecture notes on the Moodle site
15 Final Exam Lecture notes on the Moodle site

Sources

Course Book 1. Vehicle Dynamics, R. N. Jazar, Springer, 2nd Edition, 2014.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics 5 20
Homework Assignments - -
Presentation 1 20
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 25
Final Exam/Final Jury 1 35
Toplam 8 100
Percentage of Semester Work 65
Percentage of Final Work 35
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Ability to carry out advanced research activities, both individual and as a member of a team
2 Ability to evaluate research topics and comment with scientific reasoning
3 Ability to initiate and create new methodologies, implement them on novel research areas and topics
4 Ability to produce experimental and/or analytical data in systematic manner, discuss and evaluate data to lead scintific conclusions
5 Ability to apply scientific philosophy on analysis, modelling and design of engineering systems
6 Ability to synthesis available knowledge on his/her domain to initiate, to carry, complete and present novel research at international level
7 Contribute scientific and technological advancements on engineering domain of his/her interest area
8 Contribute industrial and scientific advancements to improve the society through research activities

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours)
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class
Presentation/Seminar Prepration
Project
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury
Prepration of Final Exams/Final Jury
Total Workload 0