ECTS - Introduction to Recommender Systems
Introduction to Recommender Systems (CMPE555) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Introduction to Recommender Systems | CMPE555 | Area Elective | 3 | 0 | 0 | 3 | 5 |
Pre-requisite Course(s) |
---|
N/A |
Course Language | English |
---|---|
Course Type | Elective Courses |
Course Level | Ph.D. |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture, Drill and Practice, Problem Solving. |
Course Lecturer(s) |
|
Course Objectives | This course, which is designed to serve as the first course in the Recommender Systems specialization, introduces the concept of recommender systems, reviews several examples in detail. The course includes topics of collaborative filtering algorithms, content-based recommendation algorithms and hybrid recommendation algorithms development, explanations and evaluation metrics in recommender systems. Furthermore, the course provides students capability to implement evaluation techniques of recommender systems, and implement robustness and privacy protection techniques for recommender systems. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Basic Concepts of recommender systems, collaborative filtering algorithms, content-based recommendation algorithms, knowledge-based recommendation algorithms, and hybrid recommendation algorithms, evaluating recommender systems, a case study to generate personalized recommendations. |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | Introduction | Chapter 1 |
2 | Introduction into Basic Concepts | Chapter 1 |
3 | Collaborative Recommendation | Chapter 2 |
4 | Collaborative Recommendation | Chapter 2 |
5 | Content-Based Recommendation | Chapter 3 |
6 | Content-Based Recommendation | Chapter 3 |
7 | Knowledge-Based Recommendation | Chapter 4 |
8 | Hybrid Recommendation Approaches | Chapter 5 |
9 | Explanations in Recommender Systems | Chapter 6 |
10 | Evaluating Recommender Systems | Chapter 7 |
11 | Evaluating Recommender Systems | Chapter 7 |
12 | Case Study - Personalized Recommendations | Chapter 8 |
13 | Case Study - Personalized Recommendations | Chapter 8 |
14 | Attacks on Collaborative Recommender Systems | Chapter 9 |
Sources
Course Book | 1. Jannach, D., Zanker, M., Felfernig, A., & Friedrich, G. (2010). Recommender Systems: An Introduction. Cambridge University Press. www.recommen derbook.net |
---|---|
Other Sources | 2. Aggarwal, C. C. (2016). Recommender systems (Vol. 1). Cham: Springer International Publishing. |
3. Ricci, F., Rokach, L., & Shapira, B. (2011). Introduction to recommender systems handbook. In Recommender systems handbook (pp. 1-35). Springer, Boston, MA. | |
4. Yoo, K. H., Gretzel, U., & Zanker, M. (2012). Persuasive recommender systems: conceptual background and implications. Springer Science & Business Media. | |
5. Introduction to Information Retrieval, Cambridge University Press. 2008 http://nlp.stanford.edu/IR-book/ |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | - | - |
Laboratory | - | - |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | 3 | 20 |
Presentation | - | - |
Project | - | - |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 2 | 40 |
Final Exam/Final Jury | 1 | 40 |
Toplam | 6 | 100 |
Percentage of Semester Work | |
---|---|
Percentage of Final Work | 100 |
Total | 100 |
Course Category
Core Courses | X |
---|---|
Major Area Courses | |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | To become familiar with the state-of-the art and the literature in the software engineering research domain | X | ||||
2 | An ability to conduct world-class research in software engineering and publish scholarly articles in top conferences and journals in the area | X | ||||
3 | Be able to conduct quantitative and qualitative studies in software engineering | X | ||||
4 | Acquire skills needed to bridge software engineering academia and industry and to develop and apply scientific software engineering approaches to solve real-world problems | |||||
5 | An ability to access information in order to follow recent developments in science and technology and to perform scientific research or implement a project in the software engineering domain. | |||||
6 | An understanding of professional, legal, ethical and social issues and responsibilities related to Software Engineering | |||||
7 | Skills in project and risk management, awareness about importance of entrepreneurship, innovation and long-term development, and recognition of international standards of excellence for software engineering practices standards and methodologies. | |||||
8 | An understanding about the impact of Software Engineering solutions in a global, environmental, societal and legal context while making decisions | |||||
9 | Promote the development, adoption and sustained use of standards of excellence for software engineering practices |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 16 | 3 | 48 |
Laboratory | |||
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 16 | 2 | 32 |
Presentation/Seminar Prepration | |||
Project | |||
Report | |||
Homework Assignments | 3 | 4 | 12 |
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 2 | 5 | 10 |
Prepration of Final Exams/Final Jury | 1 | 10 | 10 |
Total Workload | 112 |