ECTS - Modeling and Control of Engineering Systems
Modeling and Control of Engineering Systems (ENE408) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Modeling and Control of Engineering Systems | ENE408 | Area Elective | 3 | 1 | 0 | 3 | 5 |
Pre-requisite Course(s) |
---|
(ENE303 veya MECE306 veya EE326) |
Course Language | English |
---|---|
Course Type | Elective Courses |
Course Level | Bachelor’s Degree (First Cycle) |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture, Demonstration, Question and Answer, Drill and Practice. |
Course Lecturer(s) |
|
Course Objectives | The main objective of this course is to provide a progressive treatment of dynamic systems suitable for all engineering students regardless of discipline. Particularly, this course aims to present a detailed treatment of modeling mechanical, electrical, electromechanical, thermal, and fluid systems by demonstrating the ways of obtaining analytical and computer solutions at an introductory, and higher, level. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Laplace transform function analysis; linearization; electromechanical systems; thermal systems; fluid systems; block diagrams and computer simulation; modeling, analysis, and design tools; feedback design |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | Transform Function Analysis – Part I | Chapter 8 |
2 | Transform Function Analysis – Part II | Chapter 8 |
3 | Developing a Linear Model | Chapter 9 |
4 | Electromechanical Systems – Part I | Chapter 10 |
5 | Electromechanical Systems – Part II | Chapter 10 |
6 | First Midterm Examination | |
7 | Thermal Systems – Part I | Chapter 11 |
8 | Thermal Systems – Part II | Chapter 11 |
9 | Fluid Systems – Part I | Chapter 12 |
10 | Fluid Systems – Part II | Chapter 12 |
11 | Second Midterm Examination | |
12 | Block Diagrams for Dynamic Systems | Chapter 13 |
13 | Modeling, Analysis, and Design Tools – Part I | Chapter 14 |
14 | Modeling, Analysis, and Design Tools – Part II, Part III | Chapter 14 |
15 | Feedback Design with MATLAB | Chapter 15 |
16 | Final Examination |
Sources
Course Book | 1. Modeling and Analysis of Dynamic Systems, 3rd Edition, by C.M. Close, D.K. Frederick, J.C. Newell, Wiley. |
---|---|
Other Sources | 2. MATLAB 2021a veya 2021b, Atılım Üniversitesi lisansıyla. |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | 1 | 5 |
Laboratory | - | - |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | 5 | 20 |
Presentation | - | - |
Project | - | - |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 2 | 45 |
Final Exam/Final Jury | 1 | 30 |
Toplam | 9 | 100 |
Percentage of Semester Work | 70 |
---|---|
Percentage of Final Work | 30 |
Total | 100 |
Course Category
Core Courses | X |
---|---|
Major Area Courses | |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Adequate knowledge of mathematics, physical sciences and the subjects specific to engineering disciplines; the ability to apply theoretical and practical knowledge of these areas in the solution of complex engineering problems. | |||||
2 | The ability to define, formulate, and solve complex engineering problems; the ability to select and apply proper analysis and modeling methods for this purpose. | |||||
3 | The ability to design a complex system, process, device or product under realistic constraints and conditions in such a way as to meet the specific requirements; the ability to apply modern design methods for this purpose. | |||||
4 | The ability to select, and use modern techniques and tools needed to analyze and solve complex problems encountered in engineering practices; the ability to use information technologies effectively. | |||||
5 | The ability to design experiments, conduct experiments, gather data, and analyze and interpret results for investigating complex engineering problems or research areas specific to engineering disciplines. | |||||
6 | The ability to work efficiently in inter-, intra-, and multi-disciplinary teams; the ability to work individually. | |||||
7 | (a) Sözlü ve yazılı etkin iletişim kurma becerisi; etkin rapor yazma ve yazılı raporları anlama, tasarım ve üretim raporları hazırlayabilme, etkin sunum yapabilme, açık ve anlaşılır talimat verme ve alma becerisi. (b) En az bir yabancı dil bilgisi; bu yabancı dilde etkin rapor yazma ve yazılı raporları anlama, tasarım ve üretim raporları hazırlayabilme, etkin sunum yapabilme, açık ve anlaşılır talimat verme ve alma becerisi. | |||||
8 | Recognition of the need for lifelong learning; the ability to access information, follow developments in science and technology, and adapt and excel oneself continuously. | |||||
9 | Acting in conformity with the ethical principles; professional and ethical responsibility and knowledge of the standards employed in engineering applications. | |||||
10 | Knowledge of business practices such as project management, risk management, and change management; awareness of entrepreneurship and innovation; knowledge of sustainable development. | |||||
11 | Knowledge of the global and social effects of engineering practices on health, environment, and safety issues, and knowledge of the contemporary issues in engineering areas; awareness of the possible legal consequences of engineering practices. | |||||
12 | (a) Knowledge of (i) fluid mechanics, (ii) heat transfer, (iii) manufacturing process, (iv) electronics and control, (v) vehicle components design, (vi) vehicle dynamics, (vii) vehicle propulsion/drive and power systems, (viii) technical laws and regulations in automotive engineering field, and (ix) vehicle verification tests. (b) The ability to merge and apply these knowledge in solving multi-disciplinary automotive problems. | |||||
13 | The ability to make use of theoretical, experimental, and simulation methods, and computer aided design techniques in automotive engineering field. | |||||
14 | The ability to work in the field of vehicle design and manufacturing. |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 16 | 3 | 48 |
Laboratory | |||
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 14 | 2 | 28 |
Presentation/Seminar Prepration | |||
Project | |||
Report | |||
Homework Assignments | 5 | 2 | 10 |
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 2 | 10 | 20 |
Prepration of Final Exams/Final Jury | 1 | 20 | 20 |
Total Workload | 126 |