Russian VI (RUS402) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Russian VI RUS402 General Elective 3 0 0 3 4
Pre-requisite Course(s)
(RUS401 veya ETI381)
Course Language Russian
Course Type Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Discussion, Question and Answer, Drill and Practice, Team/Group, Role Play.
Course Coordinator
Course Lecturer(s)
  • Instructor MDB Diğer Dil Öğretim Görevlileri
Course Assistants
Course Objectives The general aim of the course is to help students gain basic Russian language skills in order to communicate at pre-intermediate level as the continuation of RUS401.
Course Learning Outcomes The students who succeeded in this course;
  • At the end of this course students will be able to Reading • Can understand the biography of a historical figure or a famous person. (Where he was born, childhood education, personal characteristics, awards he received, what he contributed to society.) • Can combine brief information about works from different sources and use for other things(make summaries.)
  • Speaking • Can describe a place-object-space using expressions , (expressing place, direction and position). • Can convey information by establishing a cause and effect relationship, • Can interpret information about past events and history.
  • Listening • Can get the important points of conversations about historical artifacts in a place s/he visits (For example, places and artifacts such as museums, mosques, churches, castles, bridges). • Can evaluate some social events by comparing their current and past situations.
  • Writing • Can write simple, relatively short, accurate and understandable texts about the things he experiences without any help or looking at the dictionary. • Can write letters, e-mails and notes. • Can translate short texts.
Course Content Vocabulary, structure and communicative skills at pre-intermediate level; up to date topics on newspapers, magazines, and books.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Orientation Course Memo
2 Reading and Translation Page 95
3 Making sentences Reading and Translation Unit 4 page 97
4 Adjectives Text Exploitation Unit 4.page 104
5 Adjectives Unit 4 page 108
6 Verbs Phrases Unit 4. page 125
7 Verbs Reading Practice Unit 5 page 129
8 MIDTERM EXAM
9 Reading Practice Unit 5 page 138
10 Questions Reading Practice Unit 5 page 142
11 Translation Practice Unit 5 page 165
12 Reading Practice Unit 6 page 173
13 Practices Unit 6 page 176
14 Reading and Translation Unit 6 page 186
15 General revision
16 Final exam

Sources

Course Book 1. V.Antonova, M.Nahabina, A.Tolstıh. (2004) Doroga v Rossiyu 3, Zlatoust Yayınları, Moskova
Other Sources 2. Tsentr’’Zlatoust’’197101, Russia, St. Petersburg Kamennoostrovskij pr., 24b, off.1-H

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 2 30
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 30
Final Exam/Final Jury 1 40
Toplam 4 100
Percentage of Semester Work 50
Percentage of Final Work 50
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Adequate knowledge of mathematics, physical sciences and the subjects specific to engineering disciplines; the ability to apply theoretical and practical knowledge of these areas in the solution of complex engineering problems.
2 The ability to define, formulate, and solve complex engineering problems; the ability to select and apply proper analysis and modeling methods for this purpose.
3 The ability to design a complex system, process, device or product under realistic constraints and conditions in such a way as to meet the specific requirements; the ability to apply modern design methods for this purpose.
4 The ability to select, and use modern techniques and tools needed to analyze and solve complex problems encountered in engineering practices; the ability to use information technologies effectively.
5 The ability to design experiments, conduct experiments, gather data, and analyze and interpret results for investigating complex engineering problems or research areas specific to engineering disciplines.
6 The ability to work efficiently in inter-, intra-, and multi-disciplinary teams; the ability to work individually.
7 (a) Sözlü ve yazılı etkin iletişim kurma becerisi; etkin rapor yazma ve yazılı raporları anlama, tasarım ve üretim raporları hazırlayabilme, etkin sunum yapabilme, açık ve anlaşılır talimat verme ve alma becerisi. (b) En az bir yabancı dil bilgisi; bu yabancı dilde etkin rapor yazma ve yazılı raporları anlama, tasarım ve üretim raporları hazırlayabilme, etkin sunum yapabilme, açık ve anlaşılır talimat verme ve alma becerisi. X
8 Recognition of the need for lifelong learning; the ability to access information, follow developments in science and technology, and adapt and excel oneself continuously.
9 Acting in conformity with the ethical principles; professional and ethical responsibility and knowledge of the standards employed in engineering applications.
10 Knowledge of business practices such as project management, risk management, and change management; awareness of entrepreneurship and innovation; knowledge of sustainable development.
11 Knowledge of the global and social effects of engineering practices on health, environment, and safety issues, and knowledge of the contemporary issues in engineering areas; awareness of the possible legal consequences of engineering practices.
12 (a) Knowledge of (i) fluid mechanics, (ii) heat transfer, (iii) manufacturing process, (iv) electronics and control, (v) vehicle components design, (vi) vehicle dynamics, (vii) vehicle propulsion/drive and power systems, (viii) technical laws and regulations in automotive engineering field, and (ix) vehicle verification tests. (b) The ability to merge and apply these knowledge in solving multi-disciplinary automotive problems.
13 The ability to make use of theoretical, experimental, and simulation methods, and computer aided design techniques in automotive engineering field.
14 The ability to work in the field of vehicle design and manufacturing.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 2 32
Presentation/Seminar Prepration
Project
Report
Homework Assignments 2 5 10
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 5 5
Prepration of Final Exams/Final Jury 1 5 5
Total Workload 100