ECTS - Social Responsibility Project

Social Responsibility Project (HUM201) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Social Responsibility Project HUM201 General Elective 3 0 0 3 4
Pre-requisite Course(s)
N/A
Course Language Turkish
Course Type Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery
Learning and Teaching Strategies Drill and Practice, Field Trip.
Course Coordinator
Course Lecturer(s)
  • Staff
Course Assistants
Course Objectives • Increasing their sensitivity to social and environmental problems to actively contribute to the solution of social and environmental problems. • To ensure that NGOs are actively involved in their work and projects. • Contributing to the development of civil society-university cooperation. • Encourage group work and increase communication and interaction among students.
Course Learning Outcomes The students who succeeded in this course;
  • Students who are able to complete this course successfully; • Gain experience in taking a project and performing a project at all stages, • Gain experience in matters such as organization, coordination, division of tasks, division of labor, • Comprehend their social positions, rights and responsibilities, • Opportunities to work with institutions and institutions outside the university.
Course Content Social and environmental problems; non-governmental organizations; cooperation with non-governmental organizations; team work.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Meeting, presentation of the lesson. Copier is prepared. Presentation is made.
2 The student finds and confirms the place for voluntary work for 18 hours. Nursing homes, rehabilitation centers, non-governmental organizations in Ankara are determined.
3 The student begins to volunteer for 18 hours. She / He participates in book and clothes campaigns. Supports voluntary educational activities at the Science Center (15 hours) A non-governmental organization (NGO) promotion homework is sent. Sent an official letter to institutions Help campaign announcements are made. It is decided which day of the week will come. It is decided which NGO should be introduced.
4 Face to face with each student. Photographs and documents related to volunteer work are examined. Incomplete Missing completes Every student gets an appointment. At least 15 minutes of conversation

Sources

Other Sources 1. Faydalı Linkler; http://www.e-devlet.com/sivil_toplum_kuruluslari/ http://ankara.aile.gov.tr/tr http://www.huzurevibul.com/tr/index.asp?q=kurumListe&kurum=16 http://www.webrehberi.biz/3-3-13/ankaradaki-ozel-egitim-ve-rehabilitasyon-merkezleri.aspx http://

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work 1 60
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 1 15
Presentation 1 10
Project 1 15
Report - -
Seminar - -
Midterms Exams/Midterms Jury - -
Final Exam/Final Jury - -
Toplam 4 100
Percentage of Semester Work
Percentage of Final Work 100
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Adequate knowledge of mathematics, physical sciences and the subjects specific to engineering disciplines; the ability to apply theoretical and practical knowledge of these areas in the solution of complex engineering problems.
2 The ability to define, formulate, and solve complex engineering problems; the ability to select and apply proper analysis and modeling methods for this purpose.
3 The ability to design a complex system, process, device or product under realistic constraints and conditions in such a way as to meet the specific requirements; the ability to apply modern design methods for this purpose.
4 The ability to select, and use modern techniques and tools needed to analyze and solve complex problems encountered in engineering practices; the ability to use information technologies effectively.
5 The ability to design experiments, conduct experiments, gather data, and analyze and interpret results for investigating complex engineering problems or research areas specific to engineering disciplines.
6 The ability to work efficiently in inter-, intra-, and multi-disciplinary teams; the ability to work individually.
7 (a) Sözlü ve yazılı etkin iletişim kurma becerisi; etkin rapor yazma ve yazılı raporları anlama, tasarım ve üretim raporları hazırlayabilme, etkin sunum yapabilme, açık ve anlaşılır talimat verme ve alma becerisi. (b) En az bir yabancı dil bilgisi; bu yabancı dilde etkin rapor yazma ve yazılı raporları anlama, tasarım ve üretim raporları hazırlayabilme, etkin sunum yapabilme, açık ve anlaşılır talimat verme ve alma becerisi.
8 Recognition of the need for lifelong learning; the ability to access information, follow developments in science and technology, and adapt and excel oneself continuously. X
9 Acting in conformity with the ethical principles; professional and ethical responsibility and knowledge of the standards employed in engineering applications.
10 Knowledge of business practices such as project management, risk management, and change management; awareness of entrepreneurship and innovation; knowledge of sustainable development.
11 Knowledge of the global and social effects of engineering practices on health, environment, and safety issues, and knowledge of the contemporary issues in engineering areas; awareness of the possible legal consequences of engineering practices.
12 (a) Knowledge of (i) fluid mechanics, (ii) heat transfer, (iii) manufacturing process, (iv) electronics and control, (v) vehicle components design, (vi) vehicle dynamics, (vii) vehicle propulsion/drive and power systems, (viii) technical laws and regulations in automotive engineering field, and (ix) vehicle verification tests. (b) The ability to merge and apply these knowledge in solving multi-disciplinary automotive problems.
13 The ability to make use of theoretical, experimental, and simulation methods, and computer aided design techniques in automotive engineering field.
14 The ability to work in the field of vehicle design and manufacturing.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours)
Laboratory
Application
Special Course Internship 6 18 108
Field Work
Study Hours Out of Class
Presentation/Seminar Prepration 1 1 1
Project 5 15 75
Report
Homework Assignments 1 1 1
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury
Prepration of Final Exams/Final Jury
Total Workload 185