ECTS - English for Academic Purposes III
English for Academic Purposes III (ENG201) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
English for Academic Purposes III | ENG201 | 3. Semester | 3 | 0 | 0 | 3 | 3 |
Pre-requisite Course(s) |
---|
ENG102 ve ENG101 |
Course Language | English |
---|---|
Course Type | Compulsory Departmental Courses |
Course Level | Bachelor’s Degree (First Cycle) |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture, Demonstration, Discussion, Question and Answer, Drill and Practice, Problem Solving, Team/Group, Brain Storming, Project Design/Management. |
Course Lecturer(s) |
|
Course Objectives | The aim of this course is to help the students to further improve their academic reading and writing skills. The students who have successfully completed this course are expected to be Independent Users at level B2* according to Common European Framework of Reference. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Advanced reading and writing skills, applying critical reading skills and strategies, identifying the organization of a reading text, main ideas of the texts, and the author?s main purpose, summarizing a given text, outlining and writing an argumentative essay. |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | Orientation & Meeting New Students / Introduction to the Course Material and Syllabus | |
2 | Unit 1– Text Analysis and Discussion | Coursebook: 14, 22-31 |
3 | Unit 2– Text Analysis and Discussion | Coursebook pp. 32, 40-49 |
4 | Unit 3– Text Analysis and Discussion | Coursebook pp. 50-57, 64-67 |
5 | Unit 4– Text Analysis and Discussion | Coursebook pp. 68, 76-85 |
6 | Unit 5– Text Analysis and Discussion | Coursebook pp. 86, 94-103 |
7 | Video 1 – Introduction to Argumentative Essay and Outline / Video 2 – Argumentative Essay: Introductory Paragraph | Supp. Pack |
8 | Video 3 – Argumentative Essay: Body Paragraphs / Video 4 – Argumentative Essay: Concluding Paragraph / | Supp. Pack |
9 | Writing Practice (Full Essay) | |
10 | Writing Quiz | |
11 | Unit 6 – Text Analysis and Discussion | Coursebook pp. 104, 112 & 118-121 |
12 | Unit 7 - Text Analysis and Discussion | Coursebook pp. 122, 130-139 |
13 | Unit 8 - Text Analysis and Discussion | Coursebook pp. 140-147 & 154-157 |
14 | Extra Reading & Revision | |
15 | Revision | |
16 | FINAL EXAM |
Sources
Course Book | 1. Prism Reading 3 by Alan S. Kennedy, Chris Sowton – Cambridge University Press, 2018. |
---|---|
Other Sources | 2. ENG201 Supplementary Pack prepared by the DML instructors / Lecture Videos on Moodle shot by the DML instructors |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | - | - |
Laboratory | - | - |
Application | 1 | 10 |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | 1 | 15 |
Homework Assignments | 1 | 10 |
Presentation | - | - |
Project | - | - |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 1 | 30 |
Final Exam/Final Jury | 1 | 35 |
Toplam | 5 | 100 |
Percentage of Semester Work | 65 |
---|---|
Percentage of Final Work | 35 |
Total | 100 |
Course Category
Core Courses | X |
---|---|
Major Area Courses | |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Adequate knowledge of mathematics, physical sciences and the subjects specific to engineering disciplines; the ability to apply theoretical and practical knowledge of these areas in the solution of complex engineering problems. | |||||
2 | The ability to define, formulate, and solve complex engineering problems; the ability to select and apply proper analysis and modeling methods for this purpose. | |||||
3 | The ability to design a complex system, process, device or product under realistic constraints and conditions in such a way as to meet the specific requirements; the ability to apply modern design methods for this purpose. | |||||
4 | The ability to select, and use modern techniques and tools needed to analyze and solve complex problems encountered in engineering practices; the ability to use information technologies effectively. | |||||
5 | The ability to design experiments, conduct experiments, gather data, and analyze and interpret results for investigating complex engineering problems or research areas specific to engineering disciplines. | |||||
6 | The ability to work efficiently in inter-, intra-, and multi-disciplinary teams; the ability to work individually. | |||||
7 | (a) Sözlü ve yazılı etkin iletişim kurma becerisi; etkin rapor yazma ve yazılı raporları anlama, tasarım ve üretim raporları hazırlayabilme, etkin sunum yapabilme, açık ve anlaşılır talimat verme ve alma becerisi. (b) En az bir yabancı dil bilgisi; bu yabancı dilde etkin rapor yazma ve yazılı raporları anlama, tasarım ve üretim raporları hazırlayabilme, etkin sunum yapabilme, açık ve anlaşılır talimat verme ve alma becerisi. | X | ||||
8 | Recognition of the need for lifelong learning; the ability to access information, follow developments in science and technology, and adapt and excel oneself continuously. | X | ||||
9 | Acting in conformity with the ethical principles; professional and ethical responsibility and knowledge of the standards employed in engineering applications. | |||||
10 | Knowledge of business practices such as project management, risk management, and change management; awareness of entrepreneurship and innovation; knowledge of sustainable development. | |||||
11 | Knowledge of the global and social effects of engineering practices on health, environment, and safety issues, and knowledge of the contemporary issues in engineering areas; awareness of the possible legal consequences of engineering practices. | |||||
12 | (a) Knowledge of (i) fluid mechanics, (ii) heat transfer, (iii) manufacturing process, (iv) electronics and control, (v) vehicle components design, (vi) vehicle dynamics, (vii) vehicle propulsion/drive and power systems, (viii) technical laws and regulations in automotive engineering field, and (ix) vehicle verification tests. (b) The ability to merge and apply these knowledge in solving multi-disciplinary automotive problems. | |||||
13 | The ability to make use of theoretical, experimental, and simulation methods, and computer aided design techniques in automotive engineering field. | |||||
14 | The ability to work in the field of vehicle design and manufacturing. |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 16 | 3 | 48 |
Laboratory | |||
Application | 1 | 2 | 2 |
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 16 | 1 | 16 |
Presentation/Seminar Prepration | |||
Project | |||
Report | |||
Homework Assignments | 1 | 4 | 4 |
Quizzes/Studio Critics | 1 | 4 | 4 |
Prepration of Midterm Exams/Midterm Jury | 1 | 3 | 3 |
Prepration of Final Exams/Final Jury | 1 | 4 | 4 |
Total Workload | 81 |