ECTS - Applied Machine Learning in Data Analytics

Applied Machine Learning in Data Analytics (SE573) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Applied Machine Learning in Data Analytics SE573 Area Elective 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type Elective Courses
Course Level Ph.D.
Mode of Delivery
Learning and Teaching Strategies .
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives
Course Learning Outcomes The students who succeeded in this course;
Course Content Data statistics; linear discriminant analysis; decision trees; artificial neural networks; Bayesian learning; distance measures; instance-based and reinforcement learning; clustering; regression; support vector machines.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation

Sources

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury - -
Final Exam/Final Jury - -
Toplam 0 0
Percentage of Semester Work
Percentage of Final Work 100
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Ability to apply knowledge on Mathematics, Science and Engineering to advanced systems.
2 Implementing long-term research and development studies in the major fields of Electrical and Electronics Engineering.
3 Ability to use modern engineering tools, techniques and facilities in design and other engineering applications. X
4 Graduating researchers active on innovation and entrepreneurship.
5 Ability to report and present research results effectively.
6 Increasing the performance on accessing information resources and on following recent developments in science and technology.
7 An understanding of professional and ethical responsibility.
8 Increasing the performance on effective communications in both Turkish and English.
9 Increasing the performance on project management.
10 Ability to work successfully at project teams in interdisciplinary fields. X

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 3 48
Presentation/Seminar Prepration
Project
Report
Homework Assignments 8 2 16
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 4 8
Prepration of Final Exams/Final Jury 1 5 5
Total Workload 125