ECTS - Fundamental Principles of Tissue Engineering

Fundamental Principles of Tissue Engineering (MDES686) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Fundamental Principles of Tissue Engineering MDES686 Area Elective 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type Elective Courses
Course Level Ph.D.
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives The correlation between the principles and methods of engineering and life sciences toward the fundamental understanding of structure function relationships in normal and pathological mammalian tissues and the development of biological substitutes to restore, maintain, or improve tissue functions will be given.
Course Learning Outcomes The students who succeeded in this course;
  • Students will be learned how to use their backgrounds (engineers, biologists, and so on) for the multidisciplinary areas. They will get experience about combining the engineering analysis methods and the biological interactions.
Course Content Cell-tissue concepts, cell-tissue culture basic principles, tissue engineering, biomaterials, systems, proteins, biomaterial surface interactions, tissue microenvironment, organ loss and regeneration.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Cell-tissue concepts, structural properties, metabolic functions. Related pages of the sources
2 Cell-tissue fundamental properties, practical offers. Related pages of the sources
3 Tissue engineering, biomaterials, systems. Related pages of the sources
4 Proteins, biomaterials, surface interactions. Related pages of the sources
5 Cell-biomaterials interactions. Related pages of the sources
6 Organ lost and regeneration. Related pages of the sources
7 The role of mass transfer in tissue functions. Related pages of the sources
8 The effect of shear force for cell functions. Related pages of the sources
9 Tissue microenvironment. Related pages of the sources
10 The production of various tissues by using tissue engineering principles. Related pages of the sources
11 Implantation and the tissue reactions after implantation. Related pages of the sources
12 Bioreactors. Related pages of the sources
13 Preservation of tissues. Related pages of the sources
14 Gen therapy. Related pages of the sources
15 Design of biomaterials for tissue engineering. Related pages of the sources
16 Evaluation and the brief summary of the above topics. Related pages of the sources

Sources

Course Book 1. -
Other Sources 2. Principles of Tissue Engineering, Robert P. Lanza, Robert Langer, Joseph Vacanti, Academic Press, 4th ed., 2013.
3. Biomaterials, Intersection of Biology and Materials Science, J. S. Temenoff, A. G. Mikos, Pearson Prentice Hall, 2008.
4. Bioengineering Fundamentals, Ann Saterbak, Larry V. McIntire, Ka-Yiu San, Pearson Prentice Hall, 2007.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation 1 5
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 2 5
Presentation - -
Project 2 25
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 30
Final Exam/Final Jury 1 35
Toplam 7 100
Percentage of Semester Work 65
Percentage of Final Work 35
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 An ability to access, analyze and evaluate the knowledge in chemistry and comprehend the literature. X
2 An ability to define an advanced scientific problem in the required field and finding an alternative for the solution. X
3 An ability to design and conduct scientific and technological experiments in the lab- and pilot-scale, and to analyze and interpret their results.
4 An ability to perform independent research. X
5 An ability to give a presentation at national and international scientific conferences and to publish scientific publications in international journals.
6 An ability to achieve the necessary knowledge to follow current developments in science and technology, and do scientific research or developing projects in the field of chemistry.
7 An ability to work in a multi-disciplinary environment and to work as a part of a team. X
8 An understanding of the professional and occupational responsibilities. Awareness and responsibility about professional, legal, ethical and social issues in the required field.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 2 32
Presentation/Seminar Prepration
Project
Report
Homework Assignments 2 15 30
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 8 16
Prepration of Final Exams/Final Jury 1 10 10
Total Workload 136