ECTS - Introduction to Data Science

Introduction to Data Science (SE422) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Introduction to Data Science SE422 Area Elective 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type Elective Courses
Course Level Natural & Applied Sciences Master's Degree
Mode of Delivery Face To Face
Learning and Teaching Strategies .
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives
Course Learning Outcomes The students who succeeded in this course;
Course Content Python programming language for data science, data scraping, data manipulation, data visualization, use of vectors and matrices in data science, review of statistical concepts for data science, conditional probability, Bayes?s theorem, normal distribution, prediction, regression, classification and clustering.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation

Sources

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury - -
Final Exam/Final Jury - -
Toplam 0 0
Percentage of Semester Work
Percentage of Final Work 100
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Ability to apply knowledge on Mathematics, Science and Engineering to advanced systems.
2 Implementing long-term research and development studies in major areas of Electrical and Electronics Engineering.
3 Ability to use modern engineering tools, techniques and facilities in design and other engineering applications. X
4 Graduating researchers active on innovation and entrepreneurship.
5 Ability to report and present research results effectively.
6 Increasing the performance on accessing information resources and on following recent developments in science and technology.
7 An understanding of professional and ethical responsibility.
8 Increasing the performance on effective communications in both Turkish and English.
9 Increasing the performance on project management.
10 Ability to work successfully at project teams in interdisciplinary fields. X

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 3 48
Presentation/Seminar Prepration
Project 3 5 15
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 5 5
Prepration of Final Exams/Final Jury 1 8 8
Total Workload 124