ECTS - Introduction to Data Science
Introduction to Data Science (SE422) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Introduction to Data Science | SE422 | Area Elective | 3 | 0 | 0 | 3 | 5 |
Pre-requisite Course(s) |
---|
N/A |
Course Language | English |
---|---|
Course Type | Elective Courses |
Course Level | Natural & Applied Sciences Master's Degree |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | . |
Course Lecturer(s) |
|
Course Objectives | |
Course Learning Outcomes |
The students who succeeded in this course; |
Course Content | Python programming language for data science, data scraping, data manipulation, data visualization, use of vectors and matrices in data science, review of statistical concepts for data science, conditional probability, Bayes?s theorem, normal distribution, prediction, regression, classification and clustering. |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|
Sources
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | - | - |
Laboratory | - | - |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | - | - |
Presentation | - | - |
Project | - | - |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | - | - |
Final Exam/Final Jury | - | - |
Toplam | 0 | 0 |
Percentage of Semester Work | |
---|---|
Percentage of Final Work | 100 |
Total | 100 |
Course Category
Core Courses | X |
---|---|
Major Area Courses | |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Ability to apply knowledge on Mathematics, Science and Engineering to advanced systems. | |||||
2 | Implementing long-term research and development studies in major areas of Electrical and Electronics Engineering. | |||||
3 | Ability to use modern engineering tools, techniques and facilities in design and other engineering applications. | X | ||||
4 | Graduating researchers active on innovation and entrepreneurship. | |||||
5 | Ability to report and present research results effectively. | |||||
6 | Increasing the performance on accessing information resources and on following recent developments in science and technology. | |||||
7 | An understanding of professional and ethical responsibility. | |||||
8 | Increasing the performance on effective communications in both Turkish and English. | |||||
9 | Increasing the performance on project management. | |||||
10 | Ability to work successfully at project teams in interdisciplinary fields. | X |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 16 | 3 | 48 |
Laboratory | |||
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 16 | 3 | 48 |
Presentation/Seminar Prepration | |||
Project | 3 | 5 | 15 |
Report | |||
Homework Assignments | |||
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 1 | 5 | 5 |
Prepration of Final Exams/Final Jury | 1 | 8 | 8 |
Total Workload | 124 |