Hydrogen Technology (ENE421) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Hydrogen Technology ENE421 Area Elective 3 0 0 3 5
Pre-requisite Course(s)
(ENE203 veya CEAC203)
Course Language English
Course Type Elective Courses
Course Level Natural & Applied Sciences Master's Degree
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Demonstration, Discussion, Question and Answer, Drill and Practice, Project Design/Management.
Course Coordinator
Course Lecturer(s)
  • Prof. Dr. Yılser DEVRİM
Course Assistants
Course Objectives This course provides broad coverage of the most important fields of modern hydrogen technology: hydrogen properties, production, storage, conversion to power, and applications in materials science
Course Learning Outcomes The students who succeeded in this course;
  • Understanding of fundamentals of hydrogen technology
  • Learning hydrogen properties, production, storage and conversion to power
  • Practical approaches to design and engineering related with hydrogen
  • Functioning prototypes and advance systems related with hydrogen
Course Content Properties of hydrogen, production of hydrogen from fossil fuels and biomass, hydrogen as fuel, electrolysis, hydrogen storage, applications.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction
2 Hydrogen as a Fuel
3 Properties of Hydrogen
4 Hydrogen Production
5 Electrolysis
6 Hydrogen Storage
7 Hydrogen Storage
8 Hydrogen Functionalized Materials
9 Midterm Exam
10 Fuel Cells using Hydrogen
11 Borohydride Fuel Cells
12 Internal Combustion Engine
13 Space Applications with Hydrogen
14 Students’ Presentations
15 Students’ Presentations
16 Final Exam

Sources

Course Book 1. Hydrogen as a Future Energy Carrier by Andreas Züttel (Editor), Andreas Borgschulte (Editor), Louis Schlapbach (Editor), 2008, Wiley
Other Sources 2. Introduction to Hydrogen Technology by Roman J. Press, K. S. V. Santhanam, Massoud J. Miri, Alla V. Bailey, Gerald A. Takacs, 2008, Wiley
3. Hydrogen and Fuel Cells: Emerging Technologies and Applications, Brent Sorensen, Elsevier Science and Technology Books, 2005

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 2 25
Presentation - -
Project 1 25
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 50
Final Exam/Final Jury 1 40
Toplam 5 140
Percentage of Semester Work 60
Percentage of Final Work 40
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Ability to apply knowledge on Mathematics, Science and Engineering to advanced systems. X
2 Implementing long-term research and development studies in major areas of Electrical and Electronics Engineering. X
3 Ability to use modern engineering tools, techniques and facilities in design and other engineering applications. X
4 Graduating researchers active on innovation and entrepreneurship.
5 Ability to report and present research results effectively.
6 Increasing the performance on accessing information resources and on following recent developments in science and technology.
7 An understanding of professional and ethical responsibility.
8 Increasing the performance on effective communications in both Turkish and English.
9 Increasing the performance on project management.
10 Ability to work successfully at project teams in interdisciplinary fields. X

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 14 2 28
Presentation/Seminar Prepration
Project 1 20 20
Report
Homework Assignments 3 3 9
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 5 10
Prepration of Final Exams/Final Jury 1 10 10
Total Workload 125