ECTS - Solar Energy Technology
Solar Energy Technology (ENE308) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Solar Energy Technology | ENE308 | Area Elective | 3 | 1 | 0 | 3 | 5 |
Pre-requisite Course(s) |
---|
(ENE203 veya EE212) |
Course Language | English |
---|---|
Course Type | Elective Courses |
Course Level | Natural & Applied Sciences Master's Degree |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture, Demonstration, Discussion, Experiment, Question and Answer, Drill and Practice. |
Course Lecturer(s) |
|
Course Objectives | To give necessary knowledge to the students on solar energy and its applications. The aim of the course is to help the development of the national industry. To help the development of the engineering skills of the students. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Introduction to solar energy conversions, fundamentals of solar radiation, methods of solar collection and thermal conversion, solar heating systems, solar thermal power, capturing solar energy through biomass. |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | Fundamental Concepts and Solar Radiation | Chapter 1 |
2 | Solar Energy and Available Solar Radiation | Chapter 2 |
3 | Selected Heat Transfer Topics | Chapter 3 |
4 | Solar Angles and Extraterrestial Solar Radiation | Chapter 4 |
5 | Calculation of solar radiation on horizontal and tilted surfaces. | Chapter 4 |
6 | Atmospheric Solar Radiation | Chapter 5 |
7 | Transmission of solar radiation through glass and plastics. | Chapter 6 |
8 | Flat-Plate Collectors | Chapter 6 |
9 | Concentrating Collectors | Chapter 7 |
10 | Midterm Exam | |
11 | Thermal Energy storage and Power generation using thermal energy | Chapter 8 |
12 | Solar Energy Applications | Chapter 9 |
13 | Solar Energy Applications | Chapter 9 |
14 | Solar Cells and direct conversion of solar energy into electrical energy | Chapter 10 |
15 | Solar Cells and direct conversion of solar energy into electrical energy, Design of PV systems | Chapter 11 |
16 | Final Exam |
Sources
Course Book | 1. J. Duffie and W. Beckman, Solar Engineering of Thermal Processes, 3rd Edition, John Wiley & Sons, Inc., 2006 |
---|---|
Other Sources | 2. R.C. Neville, Solar Energy Conversion-The Solar Cell, 2nd Edition, Elsevier, 1995 |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | - | - |
Laboratory | - | - |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | - | - |
Presentation | - | - |
Project | - | - |
Report | 1 | 25 |
Seminar | - | - |
Midterms Exams/Midterms Jury | 1 | 30 |
Final Exam/Final Jury | 1 | 45 |
Toplam | 3 | 100 |
Percentage of Semester Work | 0 |
---|---|
Percentage of Final Work | 100 |
Total | 100 |
Course Category
Core Courses | X |
---|---|
Major Area Courses | |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Ability to apply knowledge on Mathematics, Science and Engineering to advanced systems. | X | ||||
2 | Implementing long-term research and development studies in the major fields of Electrical and Electronics Engineering. | X | ||||
3 | Ability to use modern engineering tools, techniques and facilities in design and other engineering applications. | X | ||||
4 | Graduating researchers active on innovation and entrepreneurship. | |||||
5 | Ability to report and present research results effectively. | |||||
6 | Increasing the performance on accessing information resources and on following recent developments in science and technology. | |||||
7 | An understanding of professional and ethical responsibility. | |||||
8 | Increasing the performance on effective communications in both Turkish and English. | |||||
9 | Increasing the performance on project management. | |||||
10 | Ability to work successfully at project teams in interdisciplinary fields. | X |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 16 | 3 | 48 |
Laboratory | |||
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 16 | 2 | 32 |
Presentation/Seminar Prepration | |||
Project | |||
Report | 1 | 15 | 15 |
Homework Assignments | |||
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 2 | 10 | 20 |
Prepration of Final Exams/Final Jury | 1 | 15 | 15 |
Total Workload | 130 |