ECTS - Work Accidents and Occupational Diseases

Work Accidents and Occupational Diseases (HUM412) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Work Accidents and Occupational Diseases HUM412 General Elective 3 0 0 3 4
Pre-requisite Course(s)
N/A
Course Language English
Course Type Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Discussion, Question and Answer.
Course Coordinator
Course Lecturer(s)
  • Staff
Course Assistants
Course Objectives -Recognizing work accidents and occupational diseases. -To know the conditions that cause accidents and occupational diseases. -To be able to carry out the processes of diagnosis of accidents and occupational diseases. -To obtain information about the relevant legislation and preventive engineering and medicine activities.
Course Learning Outcomes The students who succeeded in this course;
  • Students who successfully complete this course; -Learn occupational accidents and accident investigation techniques. -Know the precautions and application methods to be taken against danger, risk and risk factors. -Learn the safety and accident prevention measures to be taken against work accidents. -Define internal and external factors affecting occupational diseases. -Learn the risk factors of occupational diseases and how they affect the life of the employee. -Learn the importance of prevention methods to be taken against diseases. -Learn what to do within the framework of laws and regulations. -Acquire a healthy working awareness and culture.
Course Content Basic concepts of work accidents and occupational diseases, legal consequences and methods of protection from work accidents and occupational diseases.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction and Accident Concept Occupational Health and Safety, p. 1-18.
2 The Concept of Work Accident and Its Elements Occupational Health and Safety, p. 25-33.
3 History of Work Accidents Work Safety, p. 55-59.
4 Danger, Risk and Preventive Measures Occupational Health and Safety, p. 105-127.
5 Root Cause Analysis in Work Accidents Occupational Health and Safety, p. 102-126.
6 Legal Consequences of Work Accidents Occupational Health and Safety Law, p. 195-226.
7 Midterm The questions prepared by the course instructor.
8 Concept of Occupational Disease Occupational Health and Safety, p. 112-130.
9 History of Occupational Diseases Occupational Health and Safety, p. 135-148.
10 Occupational Diseases in Turkey and in the World Work Safety, p. 135-152.
11 Risks and Prevention Methods for Occupational Diseases Occupational Health and Safety, p. 121-143.
12 Classification of Occupational Diseases Occupational Health and Safety, p. 155-174.
13 Legal Consequences of Occupational Diseases Occupational Health and Safety Law, p. 210-222.
14 Occupational Accident and Occupational Disease Analysis with Examples from Turkey and the World-1 Occupational Health and Safety, p. 224-245.
15 Occupational Accident and Occupational Disease Analysis with Examples from Turkey and the World-2 Occupational Health and Safety, p. 224-245.
16 Final Exam The questions prepared by the course instructor.

Sources

Course Book 1. Nazmi Bilir, İş Sağlığı ve Güvenliği, Güneş Tıp Kitapevleri, İstanbul, 2016.
2. Haluk Hadi Sümer, İş Sağlığı ve Güvenliği Hukuku, Seçkin Yayıncılık, İstanbul, 2017.
3. Hakan Erdoğan, İş Sağlığı ve Güvenliği Konu Anlatım Kitabı, İstanbul, 2019.
4. Abdulvahap Yiğit, İş Güvenliği, Alfa Aktüel, Bursa, 2015.
5. İş Sağlığı ve Güvenliği, Detay Yayıncılık, Şahingöz&Şık, İstanbul, 2015.
6. Teoman Akpınar, İş Sağlığı ve İş Güvenliği, Ekin Basın Yayın, Bursa, 2013. Çalışma ve Sosyal Güvenlik Bakanlığı, Meslek Hastalıkları ve İş İle İlgili Hastalıklar Tanı Rehberi.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 50
Final Exam/Final Jury 1 50
Toplam 2 100
Percentage of Semester Work
Percentage of Final Work 100
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Adequate knowledge of subjects related to mathematics, natural sciences, and Electrical and Electronics Engineering discipline; ability to apply theoretical and applied knowledge in those fields to the solution of complex engineering problems.
2 An ability to identify, formulate, and solve complex engineering problems, ability to choose and apply appropriate models and analysis methods for this.
3 An ability to design a system, component, or process under realistic constraints to meet desired needs, and ability to apply modern design approaches for this.
4 The ability to select and use the necessary modern techniques and tools for the analysis and solution of complex problems encountered in engineering applications; the ability to use information technologies effectively
5 Ability to design and conduct experiments, collect data, analyze and interpret results for investigating complex engineering problems or discipline-specific research topics.
6 An ability to function on multi-disciplinary teams, and ability of individual working.
7 Ability to communicate effectively orally and in writing; knowledge of at least one foreign language; active report writing and understanding written reports, preparing design and production reports, the ability to make effective presentation the ability to give and receive clear and understandable instructions.
8 Awareness of the necessity of lifelong learning; the ability to access knowledge, follow the developments in science and technology and continuously stay updated.
9 Acting compliant with ethical principles, professional and ethical responsibility, and knowledge of standards used in engineering applications.
10 Knowledge about professional activities in business, such as project management, risk management, and change management awareness of entrepreneurship and innovation; knowledge about sustainable development.
11 Knowledge about the impacts of engineering practices in universal and societal dimensions on health, environment, and safety. the problems of the current age reflected in the field of engineering; awareness of the legal consequences of engineering solutions. X

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 14 3 42
Presentation/Seminar Prepration
Project
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 4 4
Prepration of Final Exams/Final Jury 1 6 6
Total Workload 100