ECTS - Introduction to Critical Thinking

Introduction to Critical Thinking (HUM323) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Introduction to Critical Thinking HUM323 General Elective 3 0 0 3 4
Pre-requisite Course(s)
N/A
Course Language English
Course Type Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Discussion, Question and Answer.
Course Coordinator
Course Lecturer(s)
  • Staff
Course Assistants
Course Objectives The course aims at introducing the central concepts of critical thinking to students, teaching them how to analyse ideas, arguments, hypotheses, and types of reasonings, as well as detecting the types of fallacies.
Course Learning Outcomes The students who succeeded in this course;
  • The students who succeeded in this course; - Comprehend the connections between ideas. - Formulate ideas in a clear and understandable way. - Identify, construct and evaluate arguments. - Evaluate the evidence for and against a hypothesis, and the pros and cons of a decision. - Detect inconsistencies and fallacies in reasoning. - Analyze problems in a systematic way. - Identify the relevance and importance of ideas. - Justify one's beliefs and opinions.
Course Content Examining and discussing the themes of critical thinking, such as writing and thinking clearly, learning and analysing the types of reasonings and arguments, making rational decisions, learning the types of fallacies; also, exercises to make these topics more understandable.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction to the topic. An Introduction to Critical Thinking and Creativity: Think More, Think Better, pp. 1-9. Critical Thinking: A Concise Guide, pp. 1-20. Critical Thinking: An Appeal to Reason, pp. 3-26.
2 Thinking and Writing Clearly. Definitions. An Introduction to Critical Thinking and Creativity: Think More, Think Better, pp. 11-31. Critical Thinking: A Concise Guide, pp. 168-215. Critical Thinking: An Appeal to Reason, pp. 27-54.
3 Necessary and Sufficient Conditions. Linguistic Pitfalls. An Introduction to Critical Thinking and Creativity: Think More, Think Better, pp. 33-52. Critical Thinking: A Concise Guide, pp. 108-142. Critical Thinking: An Appeal to Reason, pp. 55-72.
4 Truth. Basic Logic. An Introduction to Critical Thinking and Creativity: Think More, Think Better, pp. 53-67. Critical Thinking: A Concise Guide, pp. 216-240. Critical Thinking: An Appeal to Reason, pp. 73-88.
5 Identifying Arguments. Valid and Sound Arguments. An Introduction to Critical Thinking and Creativity: Think More, Think Better, pp. 69-85. Critical Thinking: A Concise Guide, pp. 21-61. Critical Thinking: An Appeal to Reason, pp. 89-105.
6 Inductive Reasoning. Argument Mapping. An Introduction to Critical Thinking and Creativity: Think More, Think Better, pp. 87-105. Critical Thinking: A Concise Guide, pp. 61-80. Critical Thinking: An Appeal to Reason, pp. 105-117.
7 Mid Term The questions prepared by the course instructor.
8 Argument Analysis. Scientific Reasoning. An Introduction to Critical Thinking and Creativity: Think More, Think Better, pp. 107-124. Critical Thinking: A Concise Guide, pp. 81-107. Critical Thinking: An Appeal to Reason, pp. 118-144.
9 Mill’s Methods. Reasoning About Causation. An Introduction to Critical Thinking and Creativity: Think More, Think Better, pp. 125-140. Critical Thinking: A Concise Guide, pp. 241-282. Critical Thinking: An Appeal
10 Diagrams of Causal Processes. Statistics and Probability. An Introduction to Critical Thinking and Creativity: Think More, Think Better, pp. 141-157. Critical Thinking: A Concise Guide, pp. 283-321. Critical Thinking: An Appeal to Reason, pp. 169-184.
11 Thinking About Values. Fallacies. An Introduction to Critical Thinking and Creativity: Think More, Think Better, pp. 159-184. Critical Thinking: A Concise Guide, pp. 143-167. Critical Thinking: An Appeal to Reason, pp. 202-227.
12 Cognitive Biases. Analogical Reasoning. An Introduction to Critical Thinking and Creativity: Think More, Think Better, pp. 185-199. Critical Thinking: A Concise Guide, pp. 322-334. Critical Thinking: An Appeal to Reason, pp. 228-241.
13 Making Rational Decisions. What Is Creativity? An Introduction to Critical Thinking and Creativity: Think More, Think Better, pp. 201-221. Critical Thinking: A Concise Guide, pp. 335-368. Critical Thinking: An Appeal to Reason, pp. 185-201.
14 Creative Thinking Habits. An Introduction to Critical Thinking and Creativity: Think More, Think Better, pp. 223-231. Critical Thinking: A Concise Guide, pp. 369-432. Critical Thinking: An Appeal to Reason, pp. 242-265.
15 Review.
16 Final Exam The questions prepared by the course instructor.

Sources

Course Book 1. Joe Y. F. Lau, An Introduction to Critical Thinking and Creativity: Think More, Think Better [Eleştirel Düşünmeye ve Yaratıcılığa Giriş: Daha Fazla Düşün, Daha İyi Düşün], New Jersey: Wiley, 2011.
2. Tracy Bowell, Gary Kemp, Critical Thinking: A Concise Guide [Eleştirel Düşünme: Kısa Bir Rehber], London: Routledge, 2010.
3. Peg Tittle, Critical Thinking: An Appeal to Reason [Eleştirel Düşünme: Akla Yapılan Bir Çağrı], London: Routledge, 2011.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 40
Final Exam/Final Jury 1 60
Toplam 2 100
Percentage of Semester Work
Percentage of Final Work 100
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Adequate knowledge of subjects related to mathematics, natural sciences, and Electrical and Electronics Engineering discipline; ability to apply theoretical and applied knowledge in those fields to the solution of complex engineering problems.
2 An ability to identify, formulate, and solve complex engineering problems, ability to choose and apply appropriate models and analysis methods for this.
3 An ability to design a system, component, or process under realistic constraints to meet desired needs, and ability to apply modern design approaches for this.
4 The ability to select and use the necessary modern techniques and tools for the analysis and solution of complex problems encountered in engineering applications; the ability to use information technologies effectively
5 Ability to design and conduct experiments, collect data, analyze and interpret results for investigating complex engineering problems or discipline-specific research topics.
6 An ability to function on multi-disciplinary teams, and ability of individual working.
7 Ability to communicate effectively orally and in writing; knowledge of at least one foreign language; active report writing and understanding written reports, preparing design and production reports, the ability to make effective presentation the ability to give and receive clear and understandable instructions.
8 Awareness of the necessity of lifelong learning; the ability to access knowledge, follow the developments in science and technology and continuously stay updated.
9 Acting compliant with ethical principles, professional and ethical responsibility, and knowledge of standards used in engineering applications. X
10 Knowledge about professional activities in business, such as project management, risk management, and change management awareness of entrepreneurship and innovation; knowledge about sustainable development.
11 Knowledge about the impacts of engineering practices in universal and societal dimensions on health, environment, and safety. the problems of the current age reflected in the field of engineering; awareness of the legal consequences of engineering solutions.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 14 3 42
Presentation/Seminar Prepration
Project
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 4 4
Prepration of Final Exams/Final Jury 1 6 6
Total Workload 100