Robot Vision (MECE445) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Robot Vision MECE445 Area Elective 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Experiment, Problem Solving.
Course Coordinator
Course Lecturer(s)
  • Assoc. Prof. Dr. Fuad Aliew
Course Assistants
Course Objectives Deriving a symbolic description of the environment from an image and understanding physics of image formation. To introduce the student to computer vision algorithms, methods and concepts. To teach the fundamental concepts in computer vision and to prepare the student to design simple vision systems. To enable the students to implement vision systems to mechatronic systems. To familiarize students with typical vision hardware systems and software tools.
Course Learning Outcomes The students who succeeded in this course;
  • The course enables students to analyze and design a vision system which is a crucial data acquiring and preprocessing method in mechatronic systems where applicable.
Course Content An introduction to the algorithms and mathematical analysis associated with the visual process; binary image processing, regions and segmentation, edge detection, photometric stereo, stereo and calibration, introduction to dynamic vision and motion.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction, Robot Vision Overview (Relation with other areas) N/A
2 Robot Vision Overview (Image formations and sensing, Projections, Brightness, Lenses, Image Sensing) N/A
3 Binary Images and their Properties (Basics, Geometrical Properties, Topological properties) N/A
4 Binary Algorithms, Regions and Segmentation (Histogram Based) N/A
5 Regions and Segmentation (Histogram Based, Spatial Coherence) N/A
6 Edge Detection (Differential Operators, Discrete Approximations ) N/A
7 Edge Detection (Laplacian of Gaussian, Canny Edge Detector ) N/A
8 Photometric Stereo (Image Formation) N/A
9 Photometric Stereo (Radiometry,Reflectance) N/A
10 Stereo (Stereo Imaging , Stereo Matching, 3-D Models ) N/A
11 Calibration (Photogrammetry, Depth) N/A
12 Dynamic Vision (Motion Field and Optical Flow) N/A
13 Dynamic Vision (Motion Field and Optical Flow) N/A
14 Structure from Motion (3-D Motion Models) N/A
15 Case Studies N/A
16 Final Examination N/A

Sources

Course Book 1. Robot Vision (MIT Electrical Engineering and Computer Science), Berthold K. P. Horn, The MIT Press, ISBN-10: 0262081598
Other Sources 2. Stefan Florczyk, Robot Vision, WILEY-VCH Verlag GmbH & Co. KGaA, 2005, ISBN 3-527-40544-5

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory 10 20
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation - -
Project 1 20
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 20
Final Exam/Final Jury 1 40
Toplam 13 100
Percentage of Semester Work 60
Percentage of Final Work 40
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Adequate knowledge of subjects related to mathematics, natural sciences, and Electrical and Electronics Engineering discipline; ability to apply theoretical and applied knowledge in those fields to the solution of complex engineering problems. X
2 An ability to identify, formulate, and solve complex engineering problems, ability to choose and apply appropriate models and analysis methods for this. X
3 An ability to design a system, component, or process under realistic constraints to meet desired needs, and ability to apply modern design approaches for this. X
4 The ability to select and use the necessary modern techniques and tools for the analysis and solution of complex problems encountered in engineering applications; the ability to use information technologies effectively
5 Ability to design and conduct experiments, collect data, analyze and interpret results for investigating complex engineering problems or discipline-specific research topics.
6 An ability to function on multi-disciplinary teams, and ability of individual working.
7 Ability to communicate effectively orally and in writing; knowledge of at least one foreign language; active report writing and understanding written reports, preparing design and production reports, the ability to make effective presentation the ability to give and receive clear and understandable instructions.
8 Awareness of the necessity of lifelong learning; the ability to access knowledge, follow the developments in science and technology and continuously stay updated.
9 Acting compliant with ethical principles, professional and ethical responsibility, and knowledge of standards used in engineering applications.
10 Knowledge about professional activities in business, such as project management, risk management, and change management awareness of entrepreneurship and innovation; knowledge about sustainable development.
11 Knowledge about the impacts of engineering practices in universal and societal dimensions on health, environment, and safety. the problems of the current age reflected in the field of engineering; awareness of the legal consequences of engineering solutions.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 14 2 28
Laboratory 14 2 28
Application
Special Course Internship
Field Work
Study Hours Out of Class
Presentation/Seminar Prepration
Project 14 2 28
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 20 20
Prepration of Final Exams/Final Jury 1 20 20
Total Workload 124