Applied Polymer Science (CEAC418) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Applied Polymer Science CEAC418 Area Elective 2 2 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Discussion, Experiment, Question and Answer.
Course Coordinator
Course Lecturer(s)
  • Asst. Prof. Dr. Salih Ertan
Course Assistants
Course Objectives The main purpose of the course is to provide students with a basic practical grounding in the principles and practices of polymer chemistry. This course also aims to develop advanced laboratory skills in polymer chemistry.
Course Learning Outcomes The students who succeeded in this course;
  • Enable to apply the fundamental principles of Polymer Chemistry.
  • Give a logically approach in polymer characterization.
  • Demonstrate an understanding of the application of and use of different instrumental methods of polymer analysis.
  • Make to gain practical applications of polymer synthesis methods.
  • Teach to classify the polymer types.
Course Content Primary classification of polymeric materials, synthesis of nylon 6-10 and nylon 6, synthesis of polystyrene, synthesis of pol (methylmetacrylate), synthesis of bakelite: the world?s first synthetic plastic, synthesis of polysulfide rubber, synthesis of linear and crosslinked polyesters, photopolymerization of methyl methacrylate, chemical polymeri

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Primary Classification of Polymeric Materials Lab Manual
2 Synthesis of Nylon 6/10 and Nylon 6 Lab Manual
3 Synthesis of Polystyrene Lab Manual
4 Synthesis of Polystyrene Lab Manual
5 Synthesis of Poly(methylmetacrylate) Lab Manual
6 Synthesis of Bakelite: The World’s First Synthetic Plastic Lab Manual
7 Synthesis of Bakelite: The World’s First Synthetic Plastic Lab Manual
8 MIDTERM
9 Synthesis of Polysulfide Rubber Lab Manual
10 Synthesis of Linear and Crosslinked Polyesters Lab Manual
11 Photopolymerization of Methyl Methacrylate Lab Manual
12 Chemical Polymerization of Aniline Lab Manual
13 Chemical Polymerization of Aniline Lab Manual
14 Synthesis of Polyurethane Foam Lab Manual
15 Make-up Lab Manual
16 FINAL EXAM

Sources

Course Book 1. Lab Kitapçığı (Lab Manual)
Other Sources 2. Textbook of Polymer Science. 3rd Ed., F. W. Billmayer, Wiley Publication, 1984.
3. Robert O. Ebewele. Polymer Science, CRC Press, 2000.
4. R. B. Seymour, Structure-Property Relationships in Polymers. Plenum Press, 1984.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory 10 60
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 20
Final Exam/Final Jury 1 20
Toplam 12 100
Percentage of Semester Work 80
Percentage of Final Work 20
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Adequate knowledge of subjects related to mathematics, natural sciences, and Electrical and Electronics Engineering discipline; ability to apply theoretical and applied knowledge in those fields to the solution of complex engineering problems. X
2 An ability to identify, formulate, and solve complex engineering problems, ability to choose and apply appropriate models and analysis methods for this. X
3 An ability to design a system, component, or process under realistic constraints to meet desired needs, and ability to apply modern design approaches for this. X
4 The ability to select and use the necessary modern techniques and tools for the analysis and solution of complex problems encountered in engineering applications; the ability to use information technologies effectively
5 Ability to design and conduct experiments, collect data, analyze and interpret results for investigating complex engineering problems or discipline-specific research topics.
6 An ability to function on multi-disciplinary teams, and ability of individual working.
7 Ability to communicate effectively orally and in writing; knowledge of at least one foreign language; active report writing and understanding written reports, preparing design and production reports, the ability to make effective presentation the ability to give and receive clear and understandable instructions.
8 Awareness of the necessity of lifelong learning; the ability to access knowledge, follow the developments in science and technology and continuously stay updated.
9 Acting compliant with ethical principles, professional and ethical responsibility, and knowledge of standards used in engineering applications.
10 Knowledge about professional activities in business, such as project management, risk management, and change management awareness of entrepreneurship and innovation; knowledge about sustainable development.
11 Knowledge about the impacts of engineering practices in universal and societal dimensions on health, environment, and safety. the problems of the current age reflected in the field of engineering; awareness of the legal consequences of engineering solutions.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 2 32
Laboratory 10 3 30
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 3 48
Presentation/Seminar Prepration
Project
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 17 17
Prepration of Final Exams/Final Jury 1 23 23
Total Workload 150