ECTS - Production Design and Prototyping

Production Design and Prototyping (ME488) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Production Design and Prototyping ME488 Area Elective 1 4 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Drill and Practice, Observation Case Study.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives The aim of this course is to introduce students basic mechanical subjects, material science, basic manufacturing methods and design principles of engineering and in addition basic design factors (line, figure, color, material, texture, design field, form, value in lighting), ergonomics / anthropometry and meaning in design and by having an interdisciplinary project, to combine the knowledge and practice.
Course Learning Outcomes The students who succeeded in this course;
  • Students will have the ability to understand and explain the basic mechanical design problems through applications with the knowledge about basic materials science and production methods. Students will be able to identify basic product design factors with respect to producibility and interpret the final product in the manner of meaning considering ergonomics and anthropometry. Students will be able to propose solutions to a design problem with the information gained from research; improve and present them by sketch drawings and prototyping. Students will be able to work in an interdisciplinary team.
Course Content Introduction to basic mechanical concepts,mechanical behavior of basic structural elements;introduction to basic materials science and basic manufacturing methods,introduction to mechanical and physical properties of materials;introduction to basic manufacturing processes and casting and material forming; basic design factors(line,figure,color,material,texture,design field,form,value in lighting), ergonomics/anthropometry;meaning in design;design project development by drawing and prototyping.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Force: Tensile, Compression and Shear forces. Moment. Weight. Equilibrium system in the plane., Mechanical behavior of basic structural elements Mechanical and physical properties of materials. Material Characterization Basic manufacturing methods. Casting and Material Forming Basic design factors in product design: Line, figure, color, material, texture, design field, form, value in lighting. Ergonomics and anthropometry Meaning in design. Representation of project topics and determination of project groups. Initial ideas of the project presentation: Preliminary research file (problem description, solution proposals, sketch drawings). Improvement of preliminary research file; solution proposals, sketch drawings. Improvement of proposed solutions to the design problem and sketch drawings. Representation of the requirement list for the pre-jury evaluation. Pre-jury evaluation. Improvement of the project. Information about the mood board design. Transition to prototyping process and presentations of mood boards. Prototyping. Prototyping. Prototyping. Prototyping.

Sources

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation 15 10
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 1 10
Presentation 8 20
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 20
Final Exam/Final Jury 1 40
Toplam 26 100
Percentage of Semester Work
Percentage of Final Work 100
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Adequate knowledge of subjects related to mathematics, natural sciences, and Electrical and Electronics Engineering discipline; ability to apply theoretical and applied knowledge in those fields to the solution of complex engineering problems. X
2 An ability to identify, formulate, and solve complex engineering problems, ability to choose and apply appropriate models and analysis methods for this. X
3 An ability to design a system, component, or process under realistic constraints to meet desired needs, and ability to apply modern design approaches for this. X
4 The ability to select and use the necessary modern techniques and tools for the analysis and solution of complex problems encountered in engineering applications; the ability to use information technologies effectively
5 Ability to design and conduct experiments, collect data, analyze and interpret results for investigating complex engineering problems or discipline-specific research topics.
6 An ability to function on multi-disciplinary teams, and ability of individual working. X
7 Ability to communicate effectively orally and in writing; knowledge of at least one foreign language; active report writing and understanding written reports, preparing design and production reports, the ability to make effective presentation the ability to give and receive clear and understandable instructions.
8 Awareness of the necessity of lifelong learning; the ability to access knowledge, follow the developments in science and technology and continuously stay updated.
9 Acting compliant with ethical principles, professional and ethical responsibility, and knowledge of standards used in engineering applications.
10 Knowledge about professional activities in business, such as project management, risk management, and change management awareness of entrepreneurship and innovation; knowledge about sustainable development.
11 Knowledge about the impacts of engineering practices in universal and societal dimensions on health, environment, and safety. the problems of the current age reflected in the field of engineering; awareness of the legal consequences of engineering solutions.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 2 32
Presentation/Seminar Prepration 8 2 16
Project
Report
Homework Assignments 1 4 4
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 10 10
Prepration of Final Exams/Final Jury 1 15 15
Total Workload 125