ECTS - Industrial Engineering Practices in Energy Sector

Industrial Engineering Practices in Energy Sector (IE322) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Industrial Engineering Practices in Energy Sector IE322 Area Elective 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Team/Group.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives This course is designed to acquaint the students about the critical role of the engineering discipline in the resource management and utilization branches of energy sector as well as the environment impacts of it. Students are organized to work in multidisciplinary teams to gain a broad experience on multidisciplinary engineering design process
Course Learning Outcomes The students who succeeded in this course;
  • Students will acquire broad knowledge about modern energy systems
  • Student will have a good command of energy related global problems and renewable green energy solutions
  • Students from different disciplines will be able to work in close collaboration within the field of modern energy systems designs
Course Content The impact of energy in today?s world; principles of energy planning and utilization; the drives of energy supply and demand; the role of an engineer in energy industries for management, resource planning and utilization; sustainability as a driving force for energy planning; common concepts in energy management; a paradigm of decision making: conventional versus new energy resources including nuclear and renewable energy; economical evaluation of energy investments,

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 The impact of energy in today’s world Life and energy. The sun. The impact of energy and management as a tool to control and develop strategies.
2 The principles of energy supply and demand. The driving forces of energy supply and demand. The trends in energy demand.
3 The role of an industrial engineering in energy industries for management, resource planning and utilization. Systems approach as a valuable tool for decision making in the energy sector.
4 Sustainability as a driving force for energy planning. The theory of sustainability and sustainable resource management.
5 Midterm exam
6 Common concepts in energy management. Energy security, environmental issues, cogeneration, efficiency in energy utilization, carbon trading, sustainable energy.
7 A paradigm of decision making. The conventional vs new energy resources including nuclear and renewable energy.
8 The details of an energy system I
9 The details of an energy system II
10 The details of an energy system III
11 Economical evaluation of energy investments. Various appraisal means, levellized cost of electricity, numerical analysis.
12 Decision support systems in the resource management, planning and utilization of energy resources.
13 Defining the correct tools for an efficient energy planning and utilization through the point of view of an industrial engineering.
14 Energy production and environment. The concept of emission management. Evaluating alternative sources for a multi criteria decision making: Resource planning and environmental hazards.
15 Energy in Turkey – A strategic management approach The relation of GDP and energy consumption in Turkey. Trends in supply and demand. Excessive dependence on energy imports. Energy sources in Turkey. The potential of renewable energy and energy efficiency. Long term energy planning for a distinctive strategic management.
16 General discussion

Sources

Course Book 1. Richard A. Dunlap, Renewable Energy, UMorgan & Claypool Publishers, 2020
2. David JC MacKay, Sustainable Energy - without the hot air, UIT Cambridge, 2009
Other Sources 3. Robert L. Evans, Fueling Our Future - An Introduction to Sustainable Energy, Cambridge University Press, 2007
4. Eduardo Rincón-Mejía, Alejandro de las Heras – Sustainable Energy Technologies – CRC Press, 2018

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation - -
Project 1 30
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 30
Final Exam/Final Jury 1 30
Toplam 3 90
Percentage of Semester Work
Percentage of Final Work 100
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Adequate knowledge of subjects related to mathematics, natural sciences, and Electrical and Electronics Engineering discipline; ability to apply theoretical and applied knowledge in those fields to the solution of complex engineering problems.
2 An ability to identify, formulate, and solve complex engineering problems, ability to choose and apply appropriate models and analysis methods for this.
3 An ability to design a system, component, or process under realistic constraints to meet desired needs, and ability to apply modern design approaches for this.
4 The ability to select and use the necessary modern techniques and tools for the analysis and solution of complex problems encountered in engineering applications; the ability to use information technologies effectively
5 Ability to design and conduct experiments, collect data, analyze and interpret results for investigating complex engineering problems or discipline-specific research topics.
6 An ability to function on multi-disciplinary teams, and ability of individual working. X
7 Ability to communicate effectively orally and in writing; knowledge of at least one foreign language; active report writing and understanding written reports, preparing design and production reports, the ability to make effective presentation the ability to give and receive clear and understandable instructions.
8 Awareness of the necessity of lifelong learning; the ability to access knowledge, follow the developments in science and technology and continuously stay updated.
9 Acting compliant with ethical principles, professional and ethical responsibility, and knowledge of standards used in engineering applications.
10 Knowledge about professional activities in business, such as project management, risk management, and change management awareness of entrepreneurship and innovation; knowledge about sustainable development. X
11 Knowledge about the impacts of engineering practices in universal and societal dimensions on health, environment, and safety. the problems of the current age reflected in the field of engineering; awareness of the legal consequences of engineering solutions. X

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 2 32
Presentation/Seminar Prepration
Project 1 25 25
Report
Homework Assignments
Quizzes/Studio Critics 3 3 9
Prepration of Midterm Exams/Midterm Jury 1 5 5
Prepration of Final Exams/Final Jury 1 6 6
Total Workload 125