Jewelry Design (ART266) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Jewelry Design ART266 Fall and Spring 3 0 0 3 4
Pre-requisite Course(s)
N/A
Course Language Turkish
Course Type Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Discussion, Drill and Practice.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives Design preparation, metal and different material shaping and rolling; techniques, application using different materials, basic design information.
Course Learning Outcomes The students who succeeded in this course;
  • Knowledge of the techniques related to jewelry production.
Course Content Shape elements, point-line-surface relation, drawing techniques, form-shape, measure-ratio, light-dark, shadow-light, volume information, texture types and touch; hand tools; production using simple modeling techniques; cutting and leveling techniques, assembly and skidding procedures; design preparation, metal and different material shaping and

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 The first jewelry in prehistoric times, ancient Egyptian jewelry, jewelry art in Mesopotamia and Hittites. Greek (ancient Greek) jewelry art, Roman and Byzantine jewelry art
2 The art of jewelry in Turks-Göktürk. Uighur-Hunter art of jewelry. Seljuk and Anatolian jewelry, Ottoman jewelry art.
3 Geometric drawings, expansion of shapes in three dimensional system
4 Projection and drawing methods
5 Gaining the Competencies to Draw Designs
6 Tools and materials presentation and decoration techniques
7 By giving three-dimensional form; Preparing models from design
8 Midterm
9 Basic information on negative mold taking
10 Döküm öncesi ve sonrası işlemler
11 Basic information about positive dies casting
12 Mixed technical material design
13 Mixed technical material design
14 Basic information about retouching
15 Making original designed jewelry
16 Final Assessment

Sources

Other Sources 1. Köroğlu, G. (2004). Anadolu Uygarlıklarında Takı. İstanbul: Türk Eskiçağ Bilimleri Enstitüsü Yayınları.
2. Türe, A. (2005). Takının Öyküsü: Dünya Kuyumculuk Tarihi 1. İstanbul: Goldaş Kültür Yayınları.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation 15 10
Laboratory - -
Application 3 40
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation 3 20
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury - -
Final Exam/Final Jury 1 30
Toplam 22 100
Percentage of Semester Work 70
Percentage of Final Work 30
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Adequate knowledge of subjects related to mathematics, natural sciences, and Electrical and Electronics Engineering discipline; ability to apply theoretical and applied knowledge in those fields to the solution of complex engineering problems.
2 An ability to identify, formulate, and solve complex engineering problems, ability to choose and apply appropriate models and analysis methods for this.
3 An ability to design a system, component, or process under realistic constraints to meet desired needs, and ability to apply modern design approaches for this.
4 The ability to select and use the necessary modern techniques and tools for the analysis and solution of complex problems encountered in engineering applications; the ability to use information technologies effectively
5 Ability to design and conduct experiments, collect data, analyze and interpret results for investigating complex engineering problems or discipline-specific research topics.
6 An ability to function on multi-disciplinary teams, and ability of individual working.
7 Ability to communicate effectively orally and in writing; knowledge of at least one foreign language; active report writing and understanding written reports, preparing design and production reports, the ability to make effective presentation the ability to give and receive clear and understandable instructions.
8 Awareness of the necessity of lifelong learning; the ability to access knowledge, follow the developments in science and technology and continuously stay updated. X
9 Acting compliant with ethical principles, professional and ethical responsibility, and knowledge of standards used in engineering applications.
10 Knowledge about professional activities in business, such as project management, risk management, and change management awareness of entrepreneurship and innovation; knowledge about sustainable development.
11 Knowledge about the impacts of engineering practices in universal and societal dimensions on health, environment, and safety. the problems of the current age reflected in the field of engineering; awareness of the legal consequences of engineering solutions.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application 3 7 21
Special Course Internship
Field Work
Study Hours Out of Class 4 3 12
Presentation/Seminar Prepration 3 4 12
Project
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury
Prepration of Final Exams/Final Jury 1 7 7
Total Workload 100