ECTS - Free Ceramic Forming
Free Ceramic Forming (ART252) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Free Ceramic Forming | ART252 | Fall and Spring | 3 | 0 | 0 | 3 | 4 |
Pre-requisite Course(s) |
---|
N/A |
Course Language | Turkish |
---|---|
Course Type | Elective Courses |
Course Level | Bachelor’s Degree (First Cycle) |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture, Drill and Practice. |
Course Lecturer(s) |
|
Course Objectives | |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | The ceramic clay; using clay for freehand forming; creating unique ceramic forms without restricting the individual creativity; creating two- or three-dimensional free-form designs using the ceramic clay. |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | What is ceramics, its contributions to human life and its importance, and a brief review of the place of ceramic art in the history of art, ceramic tools from past to present, general information about national and international ceramic artists. General explanation of course content knowledge. Giving information about course content and materials. | |
2 | Getting acquainted with ceramic clay, getting to know the ceramic material and shaping tools. General explanation of basic ceramic techniques. | Preparing the necessary material for the class |
3 | Knowledge of basic ceramic shaping techniques and their application with examples. 1. Finger method 2.Sausage technique 3.Plate technique 4.Border technique 5. Dyeing and firing knowledge. | |
4 | Making the sketch design for the targeted actual work. | |
5 | Implementation of the prepared sketches in line with the selected technique/techniques. | |
6 | Implementation of the prepared sketches in line with the selected technique/techniques. | Sketching |
7 | Midterm | |
8 | Knowledge of the harmony between negative and positive forms. Composition knowledge and practice of two or more different forms. | Practicing |
9 | Implementation of the prepared sketches in line with the selected technique/techniques. | Practicing |
10 | Implementation of the prepared sketches in line with the selected technique/techniques. | Practicing |
11 | Relief work. Implementation of the sketches they designed. | |
12 | Relief work. Implementation of the sketches they designed. | |
13 | Completion of the work done (drying, painting, glazing…) | |
14 | Biscuit baking, dyeing and final baking of the works. | |
15 | Exhibition preparations and exhibition of the works done. | Exhibition preparations. |
16 | General Evaluation of the work done in the whole semester and the general situation of the course. |
Sources
Other Sources | 1. Arcasoy, A. (1983). Seramik Teknolojisi. İstanbul: M.Ü., G.S.F., Seramik Bölümü Yayınları, No:1. |
---|---|
2. Barnard, M. (2002). Sanat Tasarım ve Görsel Kültür. Ankara: Ütopya Yayınları. | |
3. Fischer, E. (1995). Sanatın Gerekliliği. (Çev: Cevat Çapan). İstanbul: Payel Yayınları. | |
4. Flynn, M. (2002). Ceramics Figures. London: A&C Black. | |
5. Mansfield, J. (1991). Salt-Glaze Ceramics. London: A&CBlack. | |
6. May, R. (2001). Yaratma Cesareti. İstanbul: Metis Yayınları. | |
7. Mülayim, S. (1994). Sanata Giriş. İstanbul: Bilim Teknik Yayınevi. | |
8. Tansuğ, S. (1988). Sanatın Görsel Dili. İstanbul: Remzi Kitabevi. | |
9. Yılmabaşar, J. (1980). Jale Yılmabaşar Seramikleri ve Yöntemleri. Ankara: Türk Tarih Kurumu Basımevi. | |
10. Watson, O. (2004). Ceramics From Islamic Lands. London: Thames&Hudson. |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | 15 | 10 |
Laboratory | - | - |
Application | 12 | 40 |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | - | - |
Presentation | - | - |
Project | - | - |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 1 | 20 |
Final Exam/Final Jury | 1 | 30 |
Toplam | 29 | 100 |
Percentage of Semester Work | 70 |
---|---|
Percentage of Final Work | 30 |
Total | 100 |
Course Category
Core Courses | X |
---|---|
Major Area Courses | |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Adequate knowledge of subjects related to mathematics, natural sciences, and Electrical and Electronics Engineering discipline; ability to apply theoretical and applied knowledge in those fields to the solution of complex engineering problems. | |||||
2 | An ability to identify, formulate, and solve complex engineering problems, ability to choose and apply appropriate models and analysis methods for this. | |||||
3 | An ability to design a system, component, or process under realistic constraints to meet desired needs, and ability to apply modern design approaches for this. | |||||
4 | The ability to select and use the necessary modern techniques and tools for the analysis and solution of complex problems encountered in engineering applications; the ability to use information technologies effectively | |||||
5 | Ability to design and conduct experiments, collect data, analyze and interpret results for investigating complex engineering problems or discipline-specific research topics. | |||||
6 | An ability to function on multi-disciplinary teams, and ability of individual working. | |||||
7 | Ability to communicate effectively orally and in writing; knowledge of at least one foreign language; active report writing and understanding written reports, preparing design and production reports, the ability to make effective presentation the ability to give and receive clear and understandable instructions. | |||||
8 | Awareness of the necessity of lifelong learning; the ability to access knowledge, follow the developments in science and technology and continuously stay updated. | X | ||||
9 | Acting compliant with ethical principles, professional and ethical responsibility, and knowledge of standards used in engineering applications. | |||||
10 | Knowledge about professional activities in business, such as project management, risk management, and change management awareness of entrepreneurship and innovation; knowledge about sustainable development. | |||||
11 | Knowledge about the impacts of engineering practices in universal and societal dimensions on health, environment, and safety. the problems of the current age reflected in the field of engineering; awareness of the legal consequences of engineering solutions. |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 16 | 3 | 48 |
Laboratory | |||
Application | 12 | 2 | 24 |
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 6 | 2 | 12 |
Presentation/Seminar Prepration | |||
Project | |||
Report | |||
Homework Assignments | |||
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 1 | 6 | 6 |
Prepration of Final Exams/Final Jury | 1 | 10 | 10 |
Total Workload | 100 |