ECTS - Optical Communication Systems

Optical Communication Systems (EE406) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Optical Communication Systems EE406 Area Elective 3 0 0 3 5
Pre-requisite Course(s)
EE316 ve EE310
Course Language English
Course Type Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Demonstration, Drill and Practice.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives Introduce the components of an optical communications system and to describe typical systems which employ optical techniques
Course Learning Outcomes The students who succeeded in this course;
  • Identify the main parameters of laser diodes, optical fiber, and optical receivers, and analyze how different structures and materials influence the parameters of these components
  • Analyze the operation of LEDs, laser diodes, and PIN photodetectors (spectral properties, bandwidth, and circuits) and apply in optical systems
  • Explain the principles of, compare and contrast single- and multi-mode optical fiber characteristics
  • Analyze and design optical communication
  • Specify active and passive optical components for analog and digital links.
Course Content Optical fiber structures, waveguiding and fabrication, attenuation, signal distortion, mode coupling, LEDs and LASERs, power launching and coupling, photo detectors, optical receivers, point- to ?point links, line coding, coherent optical systems, photonic switching, unguided optical communication systems.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Overview of Optical Fiber Communication Glance this week’s topics from the lecture
2 Optical Fibers: Structures, Waveguiding Review last week and Glance this week’s topics from the lecture
3 Signal Degradation in Optical Fibers Review last week and Glance this week’s topics from the lecture
4 Optical Sources, Power Launching and Coupling Review last week and Glance this week’s topics from the lecture
5 Optical Sources, Power Launching and Coupling Review last week and Glance this week’s topics from the lecture
6 Photodetectors Review last week and Glance this week’s topics from the lecture
7 Optical Receiver Operation Review last week and Glance this week’s topics from the lecture
8 Optical Receiver Operation Review last week and Glance this week’s topics from the lecture
9 Digital Transmission Systems Review last week and Glance this week’s topics from the lecture
10 Analog Systems Review last week and Glance this week’s topics from the lecture
11 WDM Concepts and Components Review last week and Glance this week’s topics from the lecture
12 Optical Amplifiers Review last week and Glance this week’s topics from the lecture
13 Optical Networks Review last week and Glance this week’s topics from the lecture
14 Measurement Standards, Eye patterns, attenuation, dispersion measurements. Review last week and Glance this week’s topics from the lecture
15 Final examination period Review last week and Glance this week’s topics from the lecture
16 Final examination period Review last week and Glance this week’s topics from the lecture

Sources

Course Book 1. Gerd Keiser, 'Optical Fiber Communications' third edition, McGraw-Hill (2000)
Other Sources 2. Govind P. Agrawal, “Fiber-Optic Communication Systems”, 2nd ed., JohnWiley & Sons, Inc. (1997)

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 5 30
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 4
Final Exam/Final Jury 1 3
Toplam 8 37
Percentage of Semester Work 100
Percentage of Final Work 0
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Adequate knowledge of subjects related to mathematics, natural sciences, and Electrical and Electronics Engineering discipline; ability to apply theoretical and applied knowledge in those fields to the solution of complex engineering problems. X
2 An ability to identify, formulate, and solve complex engineering problems, ability to choose and apply appropriate models and analysis methods for this. X
3 An ability to design a system, component, or process under realistic constraints to meet desired needs, and ability to apply modern design approaches for this.
4 The ability to select and use the necessary modern techniques and tools for the analysis and solution of complex problems encountered in engineering applications; the ability to use information technologies effectively X
5 Ability to design and conduct experiments, collect data, analyze and interpret results for investigating complex engineering problems or discipline-specific research topics. X
6 An ability to function on multi-disciplinary teams, and ability of individual working.
7 Ability to communicate effectively orally and in writing; knowledge of at least one foreign language; active report writing and understanding written reports, preparing design and production reports, the ability to make effective presentation the ability to give and receive clear and understandable instructions.
8 Awareness of the necessity of lifelong learning; the ability to access knowledge, follow the developments in science and technology and continuously stay updated.
9 Acting compliant with ethical principles, professional and ethical responsibility, and knowledge of standards used in engineering applications.
10 Knowledge about professional activities in business, such as project management, risk management, and change management awareness of entrepreneurship and innovation; knowledge about sustainable development.
11 Knowledge about the impacts of engineering practices in universal and societal dimensions on health, environment, and safety. the problems of the current age reflected in the field of engineering; awareness of the legal consequences of engineering solutions.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class
Presentation/Seminar Prepration
Project
Report
Homework Assignments 6 10 60
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 5 10
Prepration of Final Exams/Final Jury 1 10 10
Total Workload 128