ECTS - Introduction to Electrical and Electronics Engineering
Introduction to Electrical and Electronics Engineering (EE103) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Introduction to Electrical and Electronics Engineering | EE103 | 1. Semester | 2 | 2 | 0 | 3 | 3.5 |
Pre-requisite Course(s) |
---|
N/A |
Course Language | English |
---|---|
Course Type | Compulsory Departmental Courses |
Course Level | Bachelor’s Degree (First Cycle) |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture, Experiment, Field Trip, Team/Group. |
Course Lecturer(s) |
|
Course Objectives | The aim of this course is to give a general perspective about Electrical and Electronics engineering subdivisions, as well as presentation and report writing rules. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Integrated introduction to selected fundamental concepts and principles in electrical and electronics engineering: circuit analysis, signals and systems, electromagnetics, telecommunications, electronics. What is Ethics, Learning about the ethical values. Steps of the engineering design process. Engineering standards specific to electrical and electronic engineering. Laboratory experiments and lectures focus on a design and construction project. |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | Engineering and other engineering areas. | Glance this week’s topics from the course book |
2 | Electrical and electronics engineering and specializations | Review last week and glance this week’s topics from your course supplements |
3 | Academic Survival Skills | Review last week and glance this week’s topics from your course supplements |
4 | Circuit variables | Review last week and glance this week’s topics from your course supplements |
5 | Circuit elements (Ohm’s Law, Kirchhoff’s Laws) | Review last week and glance this week’s topics from your course supplements |
6 | Circuit Elements (Ohm’s Law, Kirchhoff’s Laws) | Review last week and glance this week’s topics from your course supplements |
7 | Midterm examination | Review previous weeks' topics |
8 | Engineering problem solving | Review last week and glance this week’s topics from your course supplements |
9 | Semiconductors and diodes | Review last week and glance this week’s topics from your course supplements |
10 | Professional ethic and ethic codes | Review last week and glance this week’s topics from your course supplements |
11 | Professional ethic and ethic codes | Review last week and glance this week’s topics from your course supplements |
12 | Midterm examination | Review previous weeks' topics |
13 | Analog and digital systems and signal processing | Review last week and glance this week’s topics from your course supplements |
14 | Magnetic circuits and transformers | Review last week and glance this week’s topics from your course supplements |
15 | Standards, engineering your career | Review last week and glance this week’s topics from your course supplements |
16 | Final examination | Review all topics |
Sources
Other Sources | 1. Lecture Notes: Prof. Dr. Sedat SÜNTER |
---|---|
Course Book | 2. Introduction to Electrical and Computer Engineering, C. B. FLEDDERMANN, M. D. BRADSHAW, The Prentice Hall, 2003. |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | - | - |
Laboratory | 5 | 20 |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | - | - |
Presentation | - | - |
Project | - | - |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 1 | 35 |
Final Exam/Final Jury | 1 | 45 |
Toplam | 7 | 100 |
Percentage of Semester Work | 65 |
---|---|
Percentage of Final Work | 35 |
Total | 100 |
Course Category
Core Courses | X |
---|---|
Major Area Courses | |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Adequate knowledge of subjects related to mathematics, natural sciences, and Electrical and Electronics Engineering discipline; ability to apply theoretical and applied knowledge in those fields to the solution of complex engineering problems. | X | ||||
2 | An ability to identify, formulate, and solve complex engineering problems, ability to choose and apply appropriate models and analysis methods for this. | X | ||||
3 | An ability to design a system, component, or process under realistic constraints to meet desired needs, and ability to apply modern design approaches for this. | X | ||||
4 | The ability to select and use the necessary modern techniques and tools for the analysis and solution of complex problems encountered in engineering applications; the ability to use information technologies effectively | X | ||||
5 | Ability to design and conduct experiments, collect data, analyze and interpret results for investigating complex engineering problems or discipline-specific research topics. | X | ||||
6 | An ability to function on multi-disciplinary teams, and ability of individual working. | X | ||||
7 | Ability to communicate effectively orally and in writing; knowledge of at least one foreign language; active report writing and understanding written reports, preparing design and production reports, the ability to make effective presentation the ability to give and receive clear and understandable instructions. | X | ||||
8 | Awareness of the necessity of lifelong learning; the ability to access knowledge, follow the developments in science and technology and continuously stay updated. | X | ||||
9 | Acting compliant with ethical principles, professional and ethical responsibility, and knowledge of standards used in engineering applications. | X | ||||
10 | Knowledge about professional activities in business, such as project management, risk management, and change management awareness of entrepreneurship and innovation; knowledge about sustainable development. | X | ||||
11 | Knowledge about the impacts of engineering practices in universal and societal dimensions on health, environment, and safety. the problems of the current age reflected in the field of engineering; awareness of the legal consequences of engineering solutions. | X |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 16 | 2 | 32 |
Laboratory | 5 | 4 | 20 |
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 16 | 1 | 16 |
Presentation/Seminar Prepration | |||
Project | |||
Report | |||
Homework Assignments | |||
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 1 | 3 | 3 |
Prepration of Final Exams/Final Jury | 1 | 4 | 4 |
Total Workload | 75 |