ECTS - Electric and Hybrid Vehicles
Electric and Hybrid Vehicles (AE421) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Electric and Hybrid Vehicles | AE421 | Area Elective | 3 | 1 | 0 | 3 | 5 |
Pre-requisite Course(s) |
---|
(AE302 veya AE312) |
Course Language | English |
---|---|
Course Type | Elective Courses |
Course Level | Natural & Applied Sciences Master's Degree |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | . |
Course Lecturer(s) |
|
Course Objectives | This course aims to give the students the understanding of the electric and hybrid vehicle concept and the theoretical background on which this concept is based. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Electric vehicle components; history of electric vehicles; types of electric vehicles; batteries and battery modeling; alternative energy sources and stores (photovoltaics, flywheels, capacitors, fuel cells); DC and AC electric motors, brushed DC motors, and brushless electric motors; power electronics and motor drives; electric vehicle drivetrain. |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | Electric Vehicle Components | |
2 | History of Electric Vehicles | |
3 | Types of Electric Vehicles | |
4 | Types of Electric Vehicles | |
5 | Batteries and Battery Modeling | |
6 | Alternative Energy Sources and Stores | |
7 | Alternative Energy Sources and Stores | |
8 | 1st Midterm | |
9 | DC and AC Electric Motors | |
10 | Brushless Electric Motors | |
11 | Brushed DC Motors | |
12 | 2nd Midterm | |
13 | Power Electronics and Motor Drives | |
14 | Review | |
15 | Final Exam |
Sources
Course Book | 1. Electric and Hybrid Vehicles, Design Fundamentals, by Iqbal. Husain, 1st Edition, CRS Press (2005). |
---|---|
2. Electric and Hybrid Vehicles, by T. Denton, 1st Edition, Routledge (2016). |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | 15 | 5 |
Laboratory | - | - |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | 2 | 20 |
Presentation | - | - |
Project | 1 | 25 |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 2 | 20 |
Final Exam/Final Jury | 1 | 30 |
Toplam | 21 | 100 |
Percentage of Semester Work | |
---|---|
Percentage of Final Work | 100 |
Total | 100 |
Course Category
Core Courses | X |
---|---|
Major Area Courses | |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | An ability to apply advanced knowledge in computational and/or manufacturing technologies to solve manufacturing engineering problems . | |||||
2 | An ability to define and analyze issues related with manufacturing technologies. | |||||
3 | An ability to develop a solution based approach and a model for an engineering problem and design and manage an experiment. | |||||
4 | An ability to design a comprehensive manufacturing system based on creative utilization of fundamental engineering principles while fulfilling sustainability in environment and manufacturability and economic constraints. | |||||
5 | An ability to chose and use modern technologies and engineering tools for manufacturing engineering applications. | |||||
6 | Ability to perform scientific research and/or carry out innovative projects that are within the scope of manufacturing engineering. | |||||
7 | An ability to utilize information technologies efficiently to acquire datum and analyze critically, articulate the outcome and make decision accordingly. | |||||
8 | An ability to attain self-confidence and necessary organizational work skills to participate in multi-diciplinary and interdiciplinary teams as well as act individually. | X | ||||
9 | An ability to attain efficient communication skills in Turkish and English both verbally and orally. | |||||
10 | An ability to reach knowledge and to attain life-long learning and self-improvement skills, to follow recent advances in science and technology. | |||||
11 | An awareness and responsibility about professional, legal, ethical and social issues in manufacturing engineering. | |||||
12 | An awareness about solution focused project and risk management, enterpreneurship, innovative and sustainable development. | |||||
13 | An understanding on the effects of engineering applications on health, social and legal aspects at universal and local level during decision making process. |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 14 | 3 | 42 |
Laboratory | |||
Application | |||
Special Course Internship | |||
Field Work | 14 | 1 | 14 |
Study Hours Out of Class | 14 | 3 | 42 |
Presentation/Seminar Prepration | |||
Project | 1 | 10 | 10 |
Report | |||
Homework Assignments | 2 | 3 | 6 |
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 2 | 3 | 6 |
Prepration of Final Exams/Final Jury | 1 | 10 | 10 |
Total Workload | 130 |